Line 16: Line 16:
 
|
 
|
 
|}
 
|}
 
 
 
  
  
Line 31: Line 28:
 
! Proof
 
! Proof
 
|-
 
|-
 +
 
| Linearity   
 
| Linearity   
 
|<math>\mathfrak{F}(c_1g(t) + c_2h(t) = c_1G(f) + c_2H(f)</math>
 
|<math>\mathfrak{F}(c_1g(t) + c_2h(t) = c_1G(f) + c_2H(f)</math>
 
|<math>\mathfrak{F}(c_1g(t) + c_2h(t) = \int_{-\infty}^\infty c_1g(t) dt + \int_{-\infty}^\infty c_2h(t) dt </math><br/>
 
|<math>\mathfrak{F}(c_1g(t) + c_2h(t) = \int_{-\infty}^\infty c_1g(t) dt + \int_{-\infty}^\infty c_2h(t) dt </math><br/>
<math>c_1\int_{-\infty}^\infty g(t)e^{i2\pi ft} dt + c_2 \int_{-\infty}^\infty g(t)e^{i2\pi ft} dt
+
<math>c_1\int_{-\infty}^\infty g(t)e^{i2\pi ft} dt + c_2 \int_{-\infty}^\infty g(t)e^{i2\pi ft} dt </math><be/>
 +
<math>c_1G(f) + c_2H(f)</math><br/>
 +
|-
  
<math>\mathfrak{F}(ax_{1}[n] + bx_{2}[n]) = \sum_{n=-\infty}^{\infty}[ax_{1}[n] + bx_{2}[n]]e^{-j\omega n}</math><br />
 
<math>\sum_{n=-\infty}^{\infty}ax_{1}[n]e^{-j\omega n} + \sum_{n=-\infty}^{\infty}bx_{2}[n]e^{-j\omega n}</math><br />
 
<math>=a\chi_{1}(\omega) + b\chi_{2}(\omega) </math> <br />________________________________<br />
 
 
|-
 
|-
 
}
 
}

Revision as of 20:22, 22 April 2018


Table of CT Fourier Series Coefficients and Properties

Fourier series Coefficients

Function Fourier Series Coefficients


Properties of CT Fourier systems

}
Property Name Property Proof
Linearity $ \mathfrak{F}(c_1g(t) + c_2h(t) = c_1G(f) + c_2H(f) $ $ \mathfrak{F}(c_1g(t) + c_2h(t) = \int_{-\infty}^\infty c_1g(t) dt + \int_{-\infty}^\infty c_2h(t) dt $

$ c_1\int_{-\infty}^\infty g(t)e^{i2\pi ft} dt + c_2 \int_{-\infty}^\infty g(t)e^{i2\pi ft} dt $<be/> $ c_1G(f) + c_2H(f) $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison