Line 32: Line 32:
 
|-
 
|-
 
| Linearity   
 
| Linearity   
| <math>\mathfrak{F}{(c_1g(t) + c_2h(t)} = c_1G(f) + c_2H(f)
+
|<math>\mathfrak{F}{(c_1g(t) + c_2h(t)} = c_1G(f) + c_2H(f)</math>
| <math>\mathfrak{F}(ax_{1}[n] + bx_{2}[n]) = \sum_{n=-\infty}^{\infty}[ax_{1}[n] + bx_{2}[n]]e^{-j\omega n}</math><br />
+
|<math>\mathfrak{F}(ax_{1}[n] + bx_{2}[n]) = \sum_{n=-\infty}^{\infty}[ax_{1}[n] + bx_{2}[n]]e^{-j\omega n}</math><br />
 
<math>\sum_{n=-\infty}^{\infty}ax_{1}[n]e^{-j\omega n} + \sum_{n=-\infty}^{\infty}bx_{2}[n]e^{-j\omega n}</math><br />
 
<math>\sum_{n=-\infty}^{\infty}ax_{1}[n]e^{-j\omega n} + \sum_{n=-\infty}^{\infty}bx_{2}[n]e^{-j\omega n}</math><br />
 
<math>=a\chi_{1}(\omega) + b\chi_{2}(\omega) </math> <br />________________________________<br />
 
<math>=a\chi_{1}(\omega) + b\chi_{2}(\omega) </math> <br />________________________________<br />
 
|-
 
|-
 
}
 
}

Revision as of 20:09, 22 April 2018


Table of CT Fourier Series Coefficients and Properties

Fourier series Coefficients

Function Fourier Series Coefficients



Properties of CT Fourier systems

}
Property Name Property Proof
Linearity $ \mathfrak{F}{(c_1g(t) + c_2h(t)} = c_1G(f) + c_2H(f) $ $ \mathfrak{F}(ax_{1}[n] + bx_{2}[n]) = \sum_{n=-\infty}^{\infty}[ax_{1}[n] + bx_{2}[n]]e^{-j\omega n} $

$ \sum_{n=-\infty}^{\infty}ax_{1}[n]e^{-j\omega n} + \sum_{n=-\infty}^{\infty}bx_{2}[n]e^{-j\omega n} $
$ =a\chi_{1}(\omega) + b\chi_{2}(\omega) $
________________________________

Alumni Liaison

EISL lab graduate

Mu Qiao