Line 12: | Line 12: | ||
|- | |- | ||
| Time Shifting & Frequency Shifting || 1) <math>x[n - n_{o}] → e^{-j\omega n_{o}}\chi(\omega)</math><br /> | | Time Shifting & Frequency Shifting || 1) <math>x[n - n_{o}] → e^{-j\omega n_{o}}\chi(\omega)</math><br /> | ||
− | 2) <math>e^{-j/omega _{o}n}x[n] → \chi[\omega - \omega_{o}]</math><br /> | + | 2) <math>e^{-j/omega _{o}n}x[n] → \chi[\omega - \omega_{o}]</math><br /> |
|| Example | || Example | ||
|- | |- |
Revision as of 22:07, 18 March 2018
Discrete-Time Fourier Transform Properties with Proofs
Property Name | Property | Proof |
---|---|---|
Periodicity | $ \chi(\omega + 2\pi) = \chi(\omega) $ | Example |
Linearity | $ ax_{1}[n] + bx_{2}[n] → a\chi_{1}(\omega) + b\chi_{2}(\omega) $ | Example |
Time Shifting & Frequency Shifting | 1) $ x[n - n_{o}] → e^{-j\omega n_{o}}\chi(\omega) $ 2) $ e^{-j/omega _{o}n}x[n] → \chi[\omega - \omega_{o}] $ |
Example |
Conjugate & Conjugate Symmetry | x[n] → X*(-ω) | |
Parversal Relation | $ \sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega $ | |
Convolution | $ x[n]*y[n] \rightarrow \chi(\omega)\gamma (\omega) $ | |
Multiplication | ||
Duality | ||
Differentiation in Frequency |