Line 7: | Line 7: | ||
!Property Name!! Property !! Proof | !Property Name!! Property !! Proof | ||
|- | |- | ||
− | |Periodicity|| | + | |Periodicity|| <math>\chi(\omega + 2\pi) = \chi(\omega)<\math> || Example |
|- | |- | ||
− | | Linearity || | + | | Linearity || <math>ax_{1}[n] + bx_{2}[n] → a\chi_{1}(\omega) + b\chi_{2}(\omega)</math> || Example |
|- | |- | ||
| Time Shifting & Frequency Shifting || 1) x[n - n<sub>o</sub>] → e<sup>-jωn<sub>o</sub></sup>X(ω)<br /> | | Time Shifting & Frequency Shifting || 1) x[n - n<sub>o</sub>] → e<sup>-jωn<sub>o</sub></sup>X(ω)<br /> |
Revision as of 22:00, 18 March 2018
Discrete-Time Fourier Transform Properties with Proofs
Property Name | Property | Proof |
---|---|---|
Periodicity | $ \chi(\omega + 2\pi) = \chi(\omega)<\math> || Example |- | Linearity || <math>ax_{1}[n] + bx_{2}[n] → a\chi_{1}(\omega) + b\chi_{2}(\omega) $ | Example |
Time Shifting & Frequency Shifting | 1) x[n - no] → e-jωnoX(ω) 2) e-jωonx[n] → X[ω - ωo] |
Example |
Conjugate & Conjugate Symmetry | x[n] → X*(-ω) | Example |
Parversal Relation | $ \sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega $ | Example |
Convolution | $ x[n]*y[n] \rightarrow \chi(\omega)\gamma (\omega) $ | Example |
Multiplication | Example | Example |
Duality | Example | Example |
Differentiation in Frequency | Example | Example |