Line 7: Line 7:
 
!Property Name!! Property !! Proof
 
!Property Name!! Property !! Proof
 
|-
 
|-
|Periodicity|| χ(ω + 2π) = χ(ω) || Example
+
|Periodicity|| Χ(ω + 2π) = Χ(ω) || Example
 
|-
 
|-
| Linearity || ax<sub>1</sub>[n] + bx<sub>2</sub>[n] → <sub>1</sub>(ω) + <sub>2</sub>(ω) || Example
+
| Linearity || ax<sub>1</sub>[n] + bx<sub>2</sub>[n] → <sub>1</sub>(ω) + <sub>2</sub>(ω) || Example
 
|-
 
|-
| Time Shifting & Frequency Shifting || 1)<br />
+
| Time Shifting & Frequency Shifting || 1) x[n - n<sub>o</sub>] → e<sup>-jωn<sub>o</sub></sup>X(ω)<br />
2) || Example
+
2) e<sup>-jω<sub>o</sub>n</sup>x[n] → X[ω - ω<sub>o</sub>]<br />
 +
|| Example
 
|-
 
|-
| Conjugate & Conjugate Symmetry || Example || Example
+
| Conjugate & Conjugate Symmetry || x[n] → X<sup>*</sup>(-ω) || Example
 
|-
 
|-
 
| Parversal Relation || Example || Example
 
| Parversal Relation || Example || Example

Revision as of 21:04, 18 March 2018

Discrete-Time Fourier Transform Properties with Proofs


Property Name Property Proof
Periodicity Χ(ω + 2π) = Χ(ω) Example
Linearity ax1[n] + bx2[n] → aΧ1(ω) + bΧ2(ω) Example
Time Shifting & Frequency Shifting 1) x[n - no] → e-jωnoX(ω)

2) e-jωonx[n] → X[ω - ωo]

Example
Conjugate & Conjugate Symmetry x[n] → X*(-ω) Example
Parversal Relation Example Example
Convolution Example Example
Multiplication Example Example
Duality Example Example
Differentiation in Frequency Example Example

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch