(16 intermediate revisions by the same user not shown)
Line 17: Line 17:
 
\left\{
 
\left\{
 
\begin{array}{ll}
 
\begin{array}{ll}
  blah & \text{ if } dfkjguaurgau,\\
+
  \left(\frac{1}{1+j}\right)^n & \text{ if } n>=0,\\
  blih & \text{else }.
+
  0 & \text{otherwise}.
 
\end{array}
 
\end{array}
 
\right.
 
\right.
 
</math>
 
</math>
 
What properties of the complex magnitude can you use to check your answer?
 
 
----
 
 
== Share your answers below ==
 
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
 
 
----
 
  
 
=== Answer 1 ===
 
=== Answer 1 ===
  
 
<math>\begin{align}
 
<math>\begin{align}
E_{\infty}&=\lim_{N\rightarrow \infty}\sum_{n=-N}^N |j|^2 \\
+
E_{\infty}&=\sum_{n=0}^N |\left(\frac{1}{1+j}\right)^n|^2 \\
&= \lim_{N\rightarrow \infty}\sum_{n=-N}^N {(\sqrt{jj^*})}^2 \\  
+
&= \sum_{n=0}^N (\left(\frac{1}{1+j}\right)^n * \left(\frac{1}{1-j}\right)^n) \\  
&= \lim_{N\rightarrow \infty}\sum_{n=-N}^N {(\sqrt{-j^2})}^2 \\
+
&= \sum_{n=0}^N \left(\frac{1}{(1+j)(1-j)}\right)^n \\
&= \lim_{N\rightarrow \infty}\sum_{n=-N}^N 1 \\
+
&= \sum_{n=0}^N (\frac{1}{2})^n \\
&=\infty. \\
+
&= \frac{1}{1-\frac{1}{2}} \\
 +
&= 2 \\
 
\end{align}</math>  
 
\end{align}</math>  
  
  
So <math>E_{\infty} = \infty</math>.
+
So <math>E_{\infty} = 2</math>
 
+
:<span style="color: green;"> Instructors comment: Good job! The answer is correct and the justification is very clear. Now can someone compute the power? --[[User:Mboutin|Mboutin]] 19:31, 13 January 2011 (UTC)  </span>
+
  
 
<math>\begin{align}
 
<math>\begin{align}
P_{\infty}&=\lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N |j|^2 \\
+
P_{\infty}&=\lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^N |\left(\frac{1}{1+j}\right)^n|^2 \\
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N {(\sqrt{jj^*})}^2 \\  
+
 
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N {(\sqrt{-j^2})}^2 \\
+
\text{Similar to math above, the expression can be derived towards}\\
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N 1 \\
+
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^N (\frac{1}{2})^n \\  
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^{2N} \\
+
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}} \frac{1(1-(\frac{1}{2})^{N+1})}{1-\frac{1}{2}}  \\
&= \lim_{N\rightarrow \infty}{2N+1 \over {2N+1}\\
+
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}2 (1-(\frac{1}{2})^{N+1}) \\  
&= \lim_{N\rightarrow \infty}{1}\\
+
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}} (2-\frac{1}{2^N}) \\
&= 1 \\
+
&= \lim_{N\rightarrow \infty} \left(\frac{2-\frac{1}{2^N}}{2N+1} \right) \\
 +
&= \frac{2}{\infty}\\
 +
&= 0 \\
  
 
\end{align}</math>  
 
\end{align}</math>  
  
 
   
 
   
  So <math>P_{\infty} = 1</math>.  
+
  So <math>P_{\infty} = 0</math>.  
 
+
--[[User:Rgieseck|Rgieseck]] 21:35, 12 January 2011
+
  
 
=== Answer 2 ===
 
=== Answer 2 ===
Line 75: Line 64:
 
----
 
----
  
[[2011 Spring ECE 301 Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]  
+
[[2011 Spring ECE 301 Boutin|Back to ECE301 Spring 2018 Prof. Boutin]]  
  
 
[[Category:ECE301Spring2018Boutin]]  
 
[[Category:ECE301Spring2018Boutin]]  

Latest revision as of 10:13, 22 January 2018

Practice Question on "Signals and Systems"


More Practice Problems


Topic: Signal Energy and Power


Question

Compute the energy $ E_\infty $ and the power $ P_\infty $ of the following discrete-time signal

$  x[n] = \left\{ \begin{array}{ll}  \left(\frac{1}{1+j}\right)^n & \text{ if } n>=0,\\  0 & \text{otherwise}. \end{array} \right.  $

Answer 1

$ \begin{align} E_{\infty}&=\sum_{n=0}^N |\left(\frac{1}{1+j}\right)^n|^2 \\ &= \sum_{n=0}^N (\left(\frac{1}{1+j}\right)^n * \left(\frac{1}{1-j}\right)^n) \\ &= \sum_{n=0}^N \left(\frac{1}{(1+j)(1-j)}\right)^n \\ &= \sum_{n=0}^N (\frac{1}{2})^n \\ &= \frac{1}{1-\frac{1}{2}} \\ &= 2 \\ \end{align} $


So $ E_{\infty} = 2 $

$ \begin{align} P_{\infty}&=\lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^N |\left(\frac{1}{1+j}\right)^n|^2 \\ \text{Similar to math above, the expression can be derived towards}\\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^N (\frac{1}{2})^n \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}} \frac{1(1-(\frac{1}{2})^{N+1})}{1-\frac{1}{2}} \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}2 (1-(\frac{1}{2})^{N+1}) \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}} (2-\frac{1}{2^N}) \\ &= \lim_{N\rightarrow \infty} \left(\frac{2-\frac{1}{2^N}}{2N+1} \right) \\ &= \frac{2}{\infty}\\ &= 0 \\ \end{align} $


So $ P_{\infty} = 0 $. 

Answer 2

write it here.

Answer 3

write it here.


Back to ECE301 Spring 2018 Prof. Boutin

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood