Line 46: Line 46:
 
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}} (2-\frac{1}{2^N}) \\
 
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}} (2-\frac{1}{2^N}) \\
 
&= \lim_{N\rightarrow \infty} \left(\frac{2-\frac{1}{2^N}}{2N+1} \right) \\
 
&= \lim_{N\rightarrow \infty} \left(\frac{2-\frac{1}{2^N}}{2N+1} \right) \\
&= \lim_{N\rightarrow \infty}{1}\\
+
&= \frac{2}{\infty}\\
&= 1 \\
+
&= 0 \\
  
 
\end{align}</math>  
 
\end{align}</math>  
  
 
   
 
   
  So <math>P_{\infty} = 1</math>.  
+
  So <math>P_{\infty} = 0</math>.  
  
 
=== Answer 2 ===
 
=== Answer 2 ===

Revision as of 10:05, 22 January 2018

Practice Question on "Signals and Systems"


More Practice Problems


Topic: Signal Energy and Power


Question

Compute the energy $ E_\infty $ and the power $ P_\infty $ of the following discrete-time signal

$  x[n] = \left\{ \begin{array}{ll}  \left(\frac{1}{1+j}\right)^n & \text{ if } n>=0,\\  0 & \text{otherwise}. \end{array} \right.  $

Answer 1

$ \begin{align} E_{\infty}&=\sum_{n=0}^N |c|^2 \\ &= \sum_{n=0}^N (\left(\frac{1}{1+j}\right)^n * \left(\frac{1}{1-j}\right)^n) \\ &= \sum_{n=0}^N \left(\frac{1}{(1+j)(1-j)}\right)^n \\ &= \sum_{n=0}^N (\frac{1}{2})^n \\ &= \frac{1}{1-\frac{1}{2}} \\ &= 2 \\ \end{align} $


So $ E_{\infty} = 2 $

$ \begin{align} P_{\infty}&=\lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^N |\left(\frac{1}{1+j}\right)^n|^2 \\ \text{Similar to math above, the expression can be derived towards}\\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^N (\frac{1}{2})^n \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}} \frac{1(1-(\frac{1}{2})^{N+1})}{1-\frac{1}{2}} \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}2 (1-(\frac{1}{2})^{N+1}) \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}} (2-\frac{1}{2^N}) \\ &= \lim_{N\rightarrow \infty} \left(\frac{2-\frac{1}{2^N}}{2N+1} \right) \\ &= \frac{2}{\infty}\\ &= 0 \\ \end{align} $


So $ P_{\infty} = 0 $. 

Answer 2

write it here.

Answer 3

write it here.


Back to ECE301 Spring 2018 Prof. Boutin

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch