(Created page with "Category:problem solving Category:power Category:energy Category:signal Category:continuous-time signal Category:complex numbers Category:Complex Num...") |
|||
(39 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
[[Category:signal]] | [[Category:signal]] | ||
[[Category:continuous-time signal]] | [[Category:continuous-time signal]] | ||
− | |||
− | |||
[[Category:ECE301]] | [[Category:ECE301]] | ||
Line 23: | Line 21: | ||
Compute the energy <math class="inline">E_\infty</math> and the power <math class="inline">P_\infty</math> of the following continuous-time signal | Compute the energy <math class="inline">E_\infty</math> and the power <math class="inline">P_\infty</math> of the following continuous-time signal | ||
− | <math>x(t)= | + | <math>x(t)= \sin (2 \pi t)</math> |
+ | |||
What properties of the complex magnitude can you use to check your answer? | What properties of the complex magnitude can you use to check your answer? | ||
Line 33: | Line 32: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
− | E_{\infty}&=\ | + | E_{\infty}&=\int_{-\infty}^\infty |\sin(2 \pi t)|^2 dt \\ |
− | + | &=\int_{-\infty}^\infty \sin^2(2 \pi t) dt | |
− | &= \ | + | |
− | + | ||
− | + | ||
− | + | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
+ | |||
+ | |||
+ | But <math class="inline">\cos(2x) = \cos^2(x)-\sin^2(x)=1-2\sin^2(x). </math> | ||
+ | |||
+ | and therefore <math class="inline">\sin^2x = \frac{1-\cos(2x)}{2}</math>. | ||
+ | |||
+ | <math> | ||
+ | \begin{align} | ||
+ | E_{\infty}&=\int_{-\infty}^\infty \frac{1-\cos(4 \pi t)}{2} dt \\ | ||
+ | &=\int_{-\infty}^\infty \frac{1}{2} dt - \int_{-\infty}^\infty \frac{\cos(4\pi t)}{2} dt \\ | ||
+ | &\\ | ||
+ | &=\infty | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
So <math class="inline">E_{\infty} = \infty</math>. | So <math class="inline">E_{\infty} = \infty</math>. | ||
Line 46: | Line 56: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
− | P_{\infty}&=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T | | + | P_{\infty}&=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T |\sin(2\pi t)|^2 dt \quad \\ |
− | &= \lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T 1 dt \ | + | |
− | & = \lim_{T\rightarrow \infty} {1 \over {2T}} t \Big| ^T _{-T} \ | + | \text{Similar to math above, the expression can be derived towards}\\ |
− | & = \lim_{T\rightarrow \infty} {1 \over {2T}} T - {1 | + | |
− | & = \lim_{T\rightarrow \infty} {1 \over { | + | &= \lim_{T\rightarrow \infty} {1 \over {2T}} (\int_{-T}^T \frac{1}{2} dt - \int_{-T}^T \frac{1}{2} * \cos(4\pi t) dt) \quad \\ |
− | &= 1 | + | & = \lim_{T\rightarrow \infty} {1 \over {2T}} (\frac{1}{2} t \Big| ^T _{-T} - \frac{1}{8\pi} \int_{-T}^T \cos(4\pi t) d(4\pi t)) \quad \\ |
+ | & = \lim_{T\rightarrow \infty} {1 \over {2T}} ((\frac{1}{2}T - \frac{1}{2}(-T)) - \frac{1}{8\pi} (\sin(4\pi t)) \Big| ^T _{-T}) \quad \\ | ||
+ | & = \lim_{T\rightarrow \infty} {1 \over {2T}} (T - \frac{1}{8\pi} (\sin(4\pi T) - \sin(4\pi T)) \quad \\ | ||
+ | &= \lim_{T\rightarrow \infty} {1 \over {2T}} (T) \quad \\ | ||
+ | &= \lim_{T\rightarrow \infty} {1 \over {2}} \quad \\ | ||
+ | &= \frac{1}{2} \quad \\ | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
− | So <math class="inline">P_{\infty} = 1 </math>. | + | So <math class="inline">P_{\infty} = \frac{1}{2} </math>. |
+ | |||
− | |||
− | |||
− | |||
---- | ---- | ||
==Answer 2== | ==Answer 2== |
Latest revision as of 09:09, 22 January 2018
Practice Question on "Signals and Systems"
Topic: Signal Energy and Power
Question
Compute the energy $ E_\infty $ and the power $ P_\infty $ of the following continuous-time signal
$ x(t)= \sin (2 \pi t) $
What properties of the complex magnitude can you use to check your answer?
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
Answer 1=
$ \begin{align} E_{\infty}&=\int_{-\infty}^\infty |\sin(2 \pi t)|^2 dt \\ &=\int_{-\infty}^\infty \sin^2(2 \pi t) dt \end{align} $
But $ \cos(2x) = \cos^2(x)-\sin^2(x)=1-2\sin^2(x). $
and therefore $ \sin^2x = \frac{1-\cos(2x)}{2} $.
$ \begin{align} E_{\infty}&=\int_{-\infty}^\infty \frac{1-\cos(4 \pi t)}{2} dt \\ &=\int_{-\infty}^\infty \frac{1}{2} dt - \int_{-\infty}^\infty \frac{\cos(4\pi t)}{2} dt \\ &\\ &=\infty \end{align} $
So $ E_{\infty} = \infty $.
$ \begin{align} P_{\infty}&=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T |\sin(2\pi t)|^2 dt \quad \\ \text{Similar to math above, the expression can be derived towards}\\ &= \lim_{T\rightarrow \infty} {1 \over {2T}} (\int_{-T}^T \frac{1}{2} dt - \int_{-T}^T \frac{1}{2} * \cos(4\pi t) dt) \quad \\ & = \lim_{T\rightarrow \infty} {1 \over {2T}} (\frac{1}{2} t \Big| ^T _{-T} - \frac{1}{8\pi} \int_{-T}^T \cos(4\pi t) d(4\pi t)) \quad \\ & = \lim_{T\rightarrow \infty} {1 \over {2T}} ((\frac{1}{2}T - \frac{1}{2}(-T)) - \frac{1}{8\pi} (\sin(4\pi t)) \Big| ^T _{-T}) \quad \\ & = \lim_{T\rightarrow \infty} {1 \over {2T}} (T - \frac{1}{8\pi} (\sin(4\pi T) - \sin(4\pi T)) \quad \\ &= \lim_{T\rightarrow \infty} {1 \over {2T}} (T) \quad \\ &= \lim_{T\rightarrow \infty} {1 \over {2}} \quad \\ &= \frac{1}{2} \quad \\ \end{align} $
So $ P_{\infty} = \frac{1}{2} $.