(39 intermediate revisions by the same user not shown)
Line 4: Line 4:
 
[[Category:signal]]
 
[[Category:signal]]
 
[[Category:continuous-time signal]]
 
[[Category:continuous-time signal]]
[[Category:complex numbers]]
 
[[Category:Complex Number Magnitude]]
 
 
[[Category:ECE301]]
 
[[Category:ECE301]]
  
Line 23: Line 21:
  
 
Compute the energy  <math class="inline">E_\infty</math> and the power  <math class="inline">P_\infty</math> of the following continuous-time signal
 
Compute the energy  <math class="inline">E_\infty</math> and the power  <math class="inline">P_\infty</math> of the following continuous-time signal
  <math>x(t)= e^{2jt}</math>
+
  <math>x(t)= \sin (2 \pi t)</math>
 +
 
  
 
What properties of the complex magnitude can you use to check your answer?  
 
What properties of the complex magnitude can you use to check your answer?  
Line 33: Line 32:
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}
E_{\infty}&=\lim_{T\rightarrow \infty}\int_{-T}^T |e^{(2jt)}|^2 dt \quad {\color{OliveGreen}\surd}\\
+
E_{\infty}&=\int_{-\infty}^\infty |\sin(2 \pi t)|^2 dt \\
&= \lim_{T\rightarrow \infty}\int_{-T}^T |(cos(2t) + j*sin(2t))|^2 dt \quad {\color{OliveGreen}\text{ (You could skip this step.)}}\\
+
&=\int_{-\infty}^\infty \sin^2(2 \pi t) dt  
&= \lim_{T\rightarrow \infty}\int_{-T}^T {\sqrt{(cos(2t))^2 + (sin(2t))^2}}^2 dt \quad {\color{OliveGreen}\text{ (You could skip this step.)}}\\
+
& = \lim_{T\rightarrow \infty}\int_{-T}^T 1 dt \quad {\color{OliveGreen}\surd}\\
+
&= \lim_{T\rightarrow \infty} t \Big| ^T _{-T} \quad {\color{OliveGreen}\surd}\\
+
&=\infty. \quad {\color{OliveGreen}\surd}
+
 
\end{align}
 
\end{align}
 
</math>
 
</math>
 +
 +
 +
But <math class="inline">\cos(2x) = \cos^2(x)-\sin^2(x)=1-2\sin^2(x). </math>
 +
 +
and therefore <math class="inline">\sin^2x = \frac{1-\cos(2x)}{2}</math>.
 +
 +
<math>
 +
\begin{align}
 +
E_{\infty}&=\int_{-\infty}^\infty \frac{1-\cos(4 \pi t)}{2} dt \\
 +
&=\int_{-\infty}^\infty \frac{1}{2} dt - \int_{-\infty}^\infty \frac{\cos(4\pi t)}{2} dt \\
 +
&\\
 +
&=\infty
 +
\end{align}
 +
</math>
 +
  
 
So <math class="inline">E_{\infty} = \infty</math>.
 
So <math class="inline">E_{\infty} = \infty</math>.
Line 46: Line 56:
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}
P_{\infty}&=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T |e^{(2jt)}|^2 dt \quad {\color{OliveGreen}\surd}\\
+
P_{\infty}&=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T |\sin(2\pi t)|^2 dt \quad \\
&= \lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T 1 dt \quad {\color{OliveGreen}\surd}\\
+
 
& = \lim_{T\rightarrow \infty} {1 \over {2T}} t \Big| ^T _{-T} \quad {\color{OliveGreen}\surd}\\
+
\text{Similar to math above, the expression can be derived towards}\\
& = \lim_{T\rightarrow \infty} {1 \over {2T}} T - {1 \over {2T}} (-T) \quad {\color{OliveGreen}\surd}\\
+
 
& = \lim_{T\rightarrow \infty} {1 \over {2}} + {1 \over {2}} \quad {\color{OliveGreen}\surd}\\
+
&= \lim_{T\rightarrow \infty} {1 \over {2T}} (\int_{-T}^T \frac{1}{2} dt - \int_{-T}^T \frac{1}{2} * \cos(4\pi t) dt) \quad \\
&= 1
+
& = \lim_{T\rightarrow \infty} {1 \over {2T}} (\frac{1}{2} t \Big| ^T _{-T} - \frac{1}{8\pi} \int_{-T}^T \cos(4\pi t) d(4\pi t)) \quad \\
 +
& = \lim_{T\rightarrow \infty} {1 \over {2T}} ((\frac{1}{2}T - \frac{1}{2}(-T)) - \frac{1}{8\pi} (\sin(4\pi t)) \Big| ^T _{-T})  \quad \\
 +
& = \lim_{T\rightarrow \infty} {1 \over {2T}} (T - \frac{1}{8\pi} (\sin(4\pi T) - \sin(4\pi T)) \quad \\
 +
&= \lim_{T\rightarrow \infty} {1 \over {2T}} (T) \quad \\
 +
&= \lim_{T\rightarrow \infty} {1 \over {2}} \quad \\
 +
&= \frac{1}{2} \quad \\
 
\end{align}
 
\end{align}
 
</math>
 
</math>
  
So <math class="inline">P_{\infty} = 1 </math>.
+
So <math class="inline">P_{\infty} = \frac{1}{2}  </math>.
 +
 
  
<math>P_\infty</math> is larger than 0, so <math>E_\infty</math> should be infinity, and it is. (<span style="color:green">instructor's comment: good observation!</span>)
 
--[[User:Cmcmican|Cmcmican]] 19:50, 12 January 2011 (UTC)[[Category:ECE301Spring2011Boutin]]
 
  
*<span style="color:blue">Be careful when using the start symbol for multiplication in this context. It usually denotes convolution in electrical engineering.</span>
 
 
----
 
----
 
==Answer 2==
 
==Answer 2==

Latest revision as of 09:09, 22 January 2018


Practice Question on "Signals and Systems"


More Practice Problems


Topic: Signal Energy and Power


Question

Compute the energy $ E_\infty $ and the power $ P_\infty $ of the following continuous-time signal

$ x(t)= \sin (2 \pi t) $


What properties of the complex magnitude can you use to check your answer?


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1=

$ \begin{align} E_{\infty}&=\int_{-\infty}^\infty |\sin(2 \pi t)|^2 dt \\ &=\int_{-\infty}^\infty \sin^2(2 \pi t) dt \end{align} $


But $ \cos(2x) = \cos^2(x)-\sin^2(x)=1-2\sin^2(x). $

and therefore $ \sin^2x = \frac{1-\cos(2x)}{2} $.

$ \begin{align} E_{\infty}&=\int_{-\infty}^\infty \frac{1-\cos(4 \pi t)}{2} dt \\ &=\int_{-\infty}^\infty \frac{1}{2} dt - \int_{-\infty}^\infty \frac{\cos(4\pi t)}{2} dt \\ &\\ &=\infty \end{align} $


So $ E_{\infty} = \infty $.

$ \begin{align} P_{\infty}&=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T |\sin(2\pi t)|^2 dt \quad \\ \text{Similar to math above, the expression can be derived towards}\\ &= \lim_{T\rightarrow \infty} {1 \over {2T}} (\int_{-T}^T \frac{1}{2} dt - \int_{-T}^T \frac{1}{2} * \cos(4\pi t) dt) \quad \\ & = \lim_{T\rightarrow \infty} {1 \over {2T}} (\frac{1}{2} t \Big| ^T _{-T} - \frac{1}{8\pi} \int_{-T}^T \cos(4\pi t) d(4\pi t)) \quad \\ & = \lim_{T\rightarrow \infty} {1 \over {2T}} ((\frac{1}{2}T - \frac{1}{2}(-T)) - \frac{1}{8\pi} (\sin(4\pi t)) \Big| ^T _{-T}) \quad \\ & = \lim_{T\rightarrow \infty} {1 \over {2T}} (T - \frac{1}{8\pi} (\sin(4\pi T) - \sin(4\pi T)) \quad \\ &= \lim_{T\rightarrow \infty} {1 \over {2T}} (T) \quad \\ &= \lim_{T\rightarrow \infty} {1 \over {2}} \quad \\ &= \frac{1}{2} \quad \\ \end{align} $

So $ P_{\infty} = \frac{1}{2} $.



Answer 2


Back to ECE301 Spring 2018 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang