Line 3: | Line 3: | ||
=== <small> 4.0 Abstract <small> === | === <small> 4.0 Abstract <small> === | ||
− | <font size="3px"> In last tutorial we looked at three basic methods to solve first-ordered differential equations. In a linear equation, we can switch the variable <math>x</math> to a higher order, like <math>x^2</math>, <math>x^3</math>, ..., <math>x^n<math> to obtain higher-ordered equations. Similarly, the differential term <math>\frac{dy}{dx}</math> can also be switched as <math>\frac{ | + | <font size="3px"> In last tutorial we looked at three basic methods to solve first-ordered differential equations. In a linear equation, we can switch the variable <math>x</math> to a higher order, like <math>x^2</math>, <math>x^3</math>, ..., <math>x^n</math> to obtain higher-ordered equations. Similarly, the differential term <math>\frac{dy}{dx}</math> can also be switched as <math>\frac{d^2y}{dx^2}</math> </font> |
Revision as of 00:34, 17 November 2017
Introduction to Higher-Order ODEs
A slecture by Yijia Wen
4.0 Abstract
In last tutorial we looked at three basic methods to solve first-ordered differential equations. In a linear equation, we can switch the variable $ x $ to a higher order, like $ x^2 $, $ x^3 $, ..., $ x^n $ to obtain higher-ordered equations. Similarly, the differential term $ \frac{dy}{dx} $ can also be switched as $ \frac{d^2y}{dx^2} $