Line 36: Line 36:
 
For the given recurrence, we replace n with <math>2^m</math> and denote the running time as <math>S(m)</math>. Thus,we have <math>S(m) = T(2^m) =  2 T(2^{\frac{m}{2}}) + m</math>  
 
For the given recurrence, we replace n with <math>2^m</math> and denote the running time as <math>S(m)</math>. Thus,we have <math>S(m) = T(2^m) =  2 T(2^{\frac{m}{2}}) + m</math>  
  
(b) <math>3^{f(n)}</math> is NOT <math>O(3^{g(n)}</math>, here is an counter example:  
+
(b) <math>3^{f(n)}</math> is NOT <math>O(3^{g(n)}</math>). Here is an counter example:  
 +
 
 
Let <math>f(n) = n</math> and <math>g(n)=\frac{n}{2}</math>. Then <math>f(n) = O(g(n))</math>.  
 
Let <math>f(n) = n</math> and <math>g(n)=\frac{n}{2}</math>. Then <math>f(n) = O(g(n))</math>.  
 
Now, <math>3^{f(n)}=3^n</math>, <math>f(3^{f(n)})=O(3^n)</math>; however, <math>O(3^{g(n)})=O(3^{\frac{n}{2}})</math>. So <math>f(3^{f(n)}) \neq O(3^{g(n)})</math>.
 
Now, <math>3^{f(n)}=3^n</math>, <math>f(3^{f(n)})=O(3^n)</math>; however, <math>O(3^{g(n)})=O(3^{\frac{n}{2}})</math>. So <math>f(3^{f(n)}) \neq O(3^{g(n)})</math>.

Revision as of 18:03, 21 August 2017


ECE Ph.D. Qualifying Exam

Computer Engineering(CE)

Question 1: Algorithms

August 2013


Solution 1

(a) First, let us change the variables. Let $ n = 2^{m} $, so equivalently, we have $ m = \log_2 n $. Thus, $ \sqrt[]{n} = 2^{\frac{m}{2}} $.

Then we have: $ T(2^m) = 2 T(2^{\frac{m}{2}}) + \log {2^m} = 2 T(2^{\frac{m}{2}}) + m $. We denote the running time in terms of $ m $ is $ S(m) $, so $ S(m) = T(2^m) $, where $ m = \log n $. so we have $ S(m) = 2S(\frac{m}{2})+ m $.

Now this recurrence can be written in the form of $ T(m) = aT(\frac{m}{b})+ f(m) $, where $ a=2 $, $ b=2 $, and $ f(m)=m $.

$ f(m) = m = \Theta(n^{\log _{b}{a}}) = \Theta(n) $. So the second case of master's theorem applies, we have $ S(k) = \Theta(k^{\log _{b}{a}} \log k) = \Theta(k \log k) $.

Replace back with $ T(2^m) =S(m) $, and $ m = \log_2 n $, we have $ T(n) = \Theta((\log n) (\log \log n)) $.

For the given recurrence, we replace n with $ 2^m $ and denote the running time as $ S(m) $. Thus,we have $ S(m) = T(2^m) = 2 T(2^{\frac{m}{2}}) + m $

(b) $ 3^{f(n)} $ is NOT $ O(3^{g(n)} $). Here is an counter example:

Let $ f(n) = n $ and $ g(n)=\frac{n}{2} $. Then $ f(n) = O(g(n)) $. Now, $ 3^{f(n)}=3^n $, $ f(3^{f(n)})=O(3^n) $; however, $ O(3^{g(n)})=O(3^{\frac{n}{2}}) $. So $ f(3^{f(n)}) \neq O(3^{g(n)}) $.


Solution 2

(a) Assume $ T(n) = O(\log n) $, so
$ \begin{equation} \begin{aligned} T(\sqrt[]{n}) &= O(\log \sqrt[]{n} ) \\ &= O(\frac{1}{2}\log n) \end{aligned} \end{equation} $
So
, $ \begin{equation} \begin{aligned} T(n) &= 2 T(\sqrt[]{n}) + \log n \\ &= O(\log n ) + \log n \\ &= O(\log n) \end{aligned} \end{equation} $

(b) $ f(n) $ is $ O(\log n) $, then

$ f(n) <= g(n) $.

So,

$ \begin{equation} 3^{f(n)} <= 3^{g(n)} \end{equation} $


So, $ 3^{f(n)} $ is $ O(3^{g(n)}) $

Back to QE CE question 1, August 2013

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal