(Created page with "Category:ECE Category:QE Category:MN Category:problem solving Category:Dynamics <center> <font size= 4> ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Ex...")
 
 
(4 intermediate revisions by the same user not shown)
Line 21: Line 21:
 
----
 
----
 
==Questions==
 
==Questions==
All questions are in this [https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_07/MN-1%20QE%2008.pdf link]
+
All questions are in this [https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_08/MN-1%20QE%2008.pdf link]
  
  
 
=Solutions of all questions=
 
=Solutions of all questions=
 +
 +
  
  
Line 62: Line 64:
 
  &=\frac{1}{4\pi \alpha}
 
  &=\frac{1}{4\pi \alpha}
 
  \end{align*}
 
  \end{align*}
 +
</math>
 
   
 
   
 
   --------------------------------------------------------------------------------------
 
   --------------------------------------------------------------------------------------
Line 74: Line 77:
 
</math>
 
</math>
  
[[Image:1.png|Alt text|672x374px]]
+
[[Image:MN081.png|Alt text|500x500px]]
  
 
<math>
 
<math>
Line 86: Line 89:
 
at $\tau_1; V$ goes to 0. Then this process repeats in the next 2 cycles.
 
at $\tau_1; V$ goes to 0. Then this process repeats in the next 2 cycles.
  
[[Image:2.png|Alt text|672x374px]]
+
[[Image:MN082.png|Alt text|500x500px]]
  
 
<math>
 
<math>
Line 96: Line 99:
 
</math>
 
</math>
  
At $t = \tau_1$; electron will be at $x(\tau_1).$ For the next cycle; this position will be the initial one.
+
At <math>t = \tau_1</math>; electron will be at <math>x(\tau_1).</math> For the next cycle; this position will be the initial one.
  
 
   --------------------------------------------------------------------------------------
 
   --------------------------------------------------------------------------------------
Line 110: Line 113:
 
   
 
   
 
  So, we need to find avg. velocity and divide by the constant electric field value to find mobility.
 
  So, we need to find avg. velocity and divide by the constant electric field value to find mobility.
 +
 
  <math>
 
  <math>
 
  v_{avg} = \frac{V(0)+V(\tau_1)}{2} = \frac{V(\tau_1)}{2} = \frac{qE_x\tau_1}{2m^*}
 
  v_{avg} = \frac{V(0)+V(\tau_1)}{2} = \frac{V(\tau_1)}{2} = \frac{qE_x\tau_1}{2m^*}
Line 121: Line 125:
 
  e)
 
  e)
 
   
 
   
  \noindent For elastic scattering, velocity cannot change. As the velocity goes to zero here, it cannot be elastic.\\
+
  For elastic scattering, velocity cannot change. As the velocity goes to zero here, it cannot be elastic.\\
 
  Ans: ii
 
  Ans: ii
 
   
 
   

Latest revision as of 09:59, 6 August 2017


ECE Ph.D. Qualifying Exam

MICROELECTRONICS and NANOTECHNOLOGY (MN)

Question 1: Semiconductor Fundamentals

August 2008



Questions

All questions are in this link


Solutions of all questions

a)

$ \begin{align*} \frac{1}{m^*} &= \frac{1}{\hslash^2}\frac{d^2E}{dk^2} \\ &=\frac{1}{\hslash^2}\frac{d^2}{dk^2}(\alpha k^2) \\ &=2\alpha/\hslash^2 \\ \therefore m^* &= \frac{\hslash^2}{2\alpha} \end{align*} $

------------------------------------------------------------------------------------
b)

$ \begin{align*} g(E) &=\frac{\pi(k+\triangle k)^2 - \pi k^2}{\frac{2\pi}{W}\cdot\frac{2\pi}{L}}\cdot\frac{1}{\triangle E}\cdot\frac{1}{WL}\\ &\approx \frac{1}{4\pi^2}\cdot(\pi\cdot2k\triangle k)\cdot\frac{1}{\triangle E}\\ &=\frac{1}{2\pi}k\frac{\triangle k}{\triangle E}\approx = \frac{1}{2\pi}k\frac{dk}{dE} \end{align*} $

$ k = \bigg(E/\alpha\bigg)^{\frac{1}{2}} $

$ \therefore \frac{dk}{dE} = \frac{1}{2}\frac{E^{-\frac{1}{2}}}{\alpha^{-\frac{1}{2}}}\cdot\frac{1}{\alpha} = \frac{\alpha^{-\frac{1}{2}}}{2}E^{-\frac{1}{2}} $

$ \begin{align*} \therefore g(E) &= \frac{1}{2\pi}\cdot\frac{E^{\frac{1}{2}}}{\alpha^{\frac{1}{2}}}\cdot\frac{\alpha^{-\frac{1}{2}}}{2}E^{-\frac{1}{2}}\\ &=\frac{1}{4\pi \alpha} \end{align*} $

 --------------------------------------------------------------------------------------
c)

$ \begin{align*} F&=-qE=qE_x\:\:\:\:\:\:\:\:\:\:\text{(+x direction)}\\ F &=m^*a = qE_x\\ \therefore a_{max} &=\frac{qE_x}{m^*}=a \:\:\:\:\:\:\:\:\:\:\text{(constant)} \end{align*} $

Alt text

$ V(t) = \int_0^t a dt =at=\frac{qE_xt}{m^*} $

$ V_{max} = V(\tau_1) = a\tau_1=\frac{qE_x\tau_1}{m^*} $

at $\tau_1; V$ goes to 0. Then this process repeats in the next 2 cycles.

Alt text

$ x(t) = \int_0^tVdt=\int_0^t\frac{qE_x}{m^*}tdt = \frac{qE_x}{m^*}\cdot\frac{t^2}{2} $

$ \therefore x(\tau_1) =\frac{qE_x}{m^*}\cdot\frac{\tau_1^2}{2} $

At $ t = \tau_1 $; electron will be at $ x(\tau_1). $ For the next cycle; this position will be the initial one.

 --------------------------------------------------------------------------------------
d)

$   v_{avg} = \mu E \text{ (So, we use the $2^{nd}$ plot)}   $

$ \therefore \mu = \frac{v_{avg}}{E} $

So, we need to find avg. velocity and divide by the constant electric field value to find mobility.

$   v_{avg} = \frac{V(0)+V(\tau_1)}{2} = \frac{V(\tau_1)}{2} = \frac{qE_x\tau_1}{2m^*}    $
 

$ \therefore \mu = \frac{qE_x\tau_1}{2m^*E_x} = \frac{q\tau_1}{2m^*}. $

 --------------------------------------------------------------------------------------
e)

For elastic scattering, velocity cannot change. As the velocity goes to zero here, it cannot be elastic.\\
Ans: ii



Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett