(Created page with "Category:ECE Category:QE Category:FO Category:problem solving Category:Dynamics <center> <font size= 4> ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Ex...")
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
[[Category:ECE]]
 
[[Category:ECE]]
 
[[Category:QE]]
 
[[Category:QE]]
[[Category:FO]]
+
[[Category:MN]]
 
[[Category:problem solving]]
 
[[Category:problem solving]]
 
[[Category:Dynamics]]
 
[[Category:Dynamics]]
Line 11: Line 11:
  
 
<font size= 4>
 
<font size= 4>
Fields and Optics (FO)
+
MICROELECTRONICS and NANOTECHNOLOGY (MN)
  
Question 3: Dynamics 2 : Time Varying Fields and Maxwell's Equations
+
Question 1: Semiconductor Fundamentals
 
</font size>
 
</font size>
  
August 2010
+
August 2011
 
</center>
 
</center>
 
----
 
----
 
----
 
----
 
==Questions==
 
==Questions==
All questions are in this [https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_10/FO-2%20QE%2010.pdf link]
+
All questions are in this [https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_11/MN-1%20QE%2011.pdf link]
 +
 
 
=Solutions of all questions=
 
=Solutions of all questions=
:'''Click [[ECE_PhD_QE_FO3_2010_Problem1.1|here]] to view student [[ECE_PhD_QE_FO3_2010_Problem1.1|answers and discussions]]'''
+
A)
 +
i) Metal
 +
ii) Semi-conductor
 +
iii) Semi-metal
 +
iv) Insulator
 +
 
 +
* If an atom has odd no. of electrons then the <math>E_F</math> is likely to be in the conduction band to allow the odd electron to reside there.
 +
Here only Al(13) has odd no. of electrons. Hence, it is definitely expected to be a metal.
 +
 
 +
 
 +
* `Even electron rule' <math>\rightarrow</math> If a substance has odd no. of electrons then it is expected to be a metal as the Fermi level will be in the conduction band.
 +
 
 +
------------------------------------------------------------------------------------
 +
B)
 +
i) Here; doping density of p is way greater than Cu. So, we can ignore Cu for calculation of <math>n</math>.
 +
<math>
 +
\begin{align*}
 +
n&\cong N_d^+\approx N_d = 10^{17}cm^{-3}\\
 +
n &= N_c e^{(E_F-E_C)/kT} = 10^{17}\\
 +
\end{align*}
 +
</math>
 +
<math>
 +
\begin{align*}
 +
\implies e^{(E_F-E_C)/kT} &= \frac{10^{19}}{10^{17}} = 10^2\\
 +
\implies E_C-E_F &= kT\cdot 2\ln10\\
 +
&=4.6kT\\
 +
&=4.6\times 0.025 eV\\
 +
&=0.115eV
 +
\end{align*}
 +
</math>
 +
 
 +
ii) As the Cu energy levels are much below the Fermi level; Cu is not fully ionized. P however is above <math>E_F</math> and should be completely ionized.
 +
 
 +
iii) 
 +
<math>
 +
\frac{1}{2}mV_{th}^2 = \frac{3}{2}kT
 +
</math>
 +
<math>
 +
\begin{align*}
 +
&\implies V_{th} = \sqrt{\frac{3kT}{m^*}} = \sqrt{\frac{3\times 0.025\times1.6\times10^{-19}}{0.5\times9.1\times10^{-31}}}\\
 +
&\implies V_{th} = 1.6\times10^7 cm/s
 +
\end{align*}
 +
</math>
 +
 
 +
iv)
 +
<math>
 +
\begin{align*}
 +
\tau&=\frac{1}{c_nN_T}\\
 +
\tau&=\frac{1}{a_nV_{th}\cdot N_T}\\
 +
\text{Here } \tau&=10^{-7}sec\\
 +
N_T&=N_{Cu}=10^{15}cm^{-3}
 +
\end{align*}
 +
</math>
 +
(As Cu is located near the midgap, it is expected to be the recombination center)
 +
  <math>
 +
\begin{align*}
 +
\therefore a_n=\frac{1}{\tau v_{th}N_T} &= \frac{1}{1.6\times10^{15}cm^{-2}}\\
 +
&=6.25\times10^{-16}cm^2
 +
\end{align*}
 +
</math>
 +
 
 +
v) For Ge; lattice constant. <math>a=0.5mm</math> distance between n nearest atom (zinc-blend structure)
 +
  <math>
 +
=a\sqrt{3}\times\frac{1}{4}
 +
</math>
 +
    <math>
 +
\implies d=2r=\frac{a\sqrt{3}}{4}\implies r=\frac{a\sqrt{3}}{8}
 +
</math>
 +
<math>
 +
  \begin{align*}
 +
\therefore A=\pi r^2&=\pi\times\frac{3a^2}{64}\\
 +
&=3.68\times10^{16}cm^2
 +
\end{align*}
 +
  </math>
 +
So; <math>a_n\approx A</math>; so the numbers look reasonable.
 +
 
 +
\#\underline{Just Absurd and Illogical problem to solve without a calculator.}
  
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 21:05, 5 August 2017


ECE Ph.D. Qualifying Exam

MICROELECTRONICS and NANOTECHNOLOGY (MN)

Question 1: Semiconductor Fundamentals

August 2011



Questions

All questions are in this link

Solutions of all questions

A) i) Metal ii) Semi-conductor iii) Semi-metal iv) Insulator

  • If an atom has odd no. of electrons then the $ E_F $ is likely to be in the conduction band to allow the odd electron to reside there.

Here only Al(13) has odd no. of electrons. Hence, it is definitely expected to be a metal.


  • `Even electron rule' $ \rightarrow $ If a substance has odd no. of electrons then it is expected to be a metal as the Fermi level will be in the conduction band.
------------------------------------------------------------------------------------

B)

i) Here; doping density of p is way greater than Cu. So, we can ignore Cu for calculation of $ n $.

$ \begin{align*} n&\cong N_d^+\approx N_d = 10^{17}cm^{-3}\\ n &= N_c e^{(E_F-E_C)/kT} = 10^{17}\\ \end{align*} $ $ \begin{align*} \implies e^{(E_F-E_C)/kT} &= \frac{10^{19}}{10^{17}} = 10^2\\ \implies E_C-E_F &= kT\cdot 2\ln10\\ &=4.6kT\\ &=4.6\times 0.025 eV\\ &=0.115eV \end{align*} $

ii) As the Cu energy levels are much below the Fermi level; Cu is not fully ionized. P however is above $ E_F $ and should be completely ionized.

iii) $ \frac{1}{2}mV_{th}^2 = \frac{3}{2}kT $ $ \begin{align*} &\implies V_{th} = \sqrt{\frac{3kT}{m^*}} = \sqrt{\frac{3\times 0.025\times1.6\times10^{-19}}{0.5\times9.1\times10^{-31}}}\\ &\implies V_{th} = 1.6\times10^7 cm/s \end{align*} $

iv)

$   \begin{align*} \tau&=\frac{1}{c_nN_T}\\ \tau&=\frac{1}{a_nV_{th}\cdot N_T}\\ \text{Here } \tau&=10^{-7}sec\\ N_T&=N_{Cu}=10^{15}cm^{-3}  \end{align*}   $
(As Cu is located near the midgap, it is expected to be the recombination center)
 $   \begin{align*} \therefore a_n=\frac{1}{\tau v_{th}N_T} &= \frac{1}{1.6\times10^{15}cm^{-2}}\\ &=6.25\times10^{-16}cm^2  \end{align*}   $
v) For Ge; lattice constant. $ a=0.5mm $ distance between n nearest atom (zinc-blend structure)
  $  =a\sqrt{3}\times\frac{1}{4}   $
   $  \implies d=2r=\frac{a\sqrt{3}}{4}\implies r=\frac{a\sqrt{3}}{8}   $
$    \begin{align*} \therefore A=\pi r^2&=\pi\times\frac{3a^2}{64}\\ &=3.68\times10^{16}cm^2  \end{align*}    $
So; $ a_n\approx A $; so the numbers look reasonable.
\#\underline{Just Absurd and Illogical problem to solve without a calculator.}

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood