Line 21: Line 21:
 
----
 
----
 
===Solution 1===
 
===Solution 1===
First, let us change the variable. Let <math>n = 2^{m}</math>, so equivalently, we have <math>m = \log_2 n</math>. Thus, <math>\sqrt[]{n} = 2^{\frac{m}{2}}</math>.
+
(a) First, let us change the variable. Let <math>n = 2^{m}</math>, so equivalently, we have <math>m = \log_2 n</math>. Thus, <math>\sqrt[]{n} = 2^{\frac{m}{2}}</math>.
  
 
Then we have:
 
Then we have:
Line 36: Line 36:
  
 
For the given recurrence, we replace n with <math>2^m</math> and denote the running time as <math>S(m)</math>. Thus,we have <math>S(m) = T(2^m) =  2 T(2^{\frac{m}{2}}) + m</math>  
 
For the given recurrence, we replace n with <math>2^m</math> and denote the running time as <math>S(m)</math>. Thus,we have <math>S(m) = T(2^m) =  2 T(2^{\frac{m}{2}}) + m</math>  
 +
 +
(b) <math>3^{f(n)}</math> is NOT <math>O(3^{g(n)}</math>, here is an counter example: Let <math>f(n) = n</math> and <math>g(n)=\frac{n}{2}</math>. Then </math>f(n) = O(g(n))</math>.
 +
 +
Now, <math>3^{f(n)}=3^n</math>, <math>f(3^{f(n)})=O(3^n)</math>; however, <math>O(3^{g(n)})=O(3^{\frac{n}{2}})</math>. So <math>f(3^{f(n)}) \neq O(3^{g(n)})</math>.
  
 
[[ECE-QE_CE1-2013|Back to QE CE question 1, August 2013]]
 
[[ECE-QE_CE1-2013|Back to QE CE question 1, August 2013]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 17:25, 20 July 2017


ECE Ph.D. Qualifying Exam

Computer Engineering(CE)

Question 1: Algorithms

August 2013


Solution 1

(a) First, let us change the variable. Let $ n = 2^{m} $, so equivalently, we have $ m = \log_2 n $. Thus, $ \sqrt[]{n} = 2^{\frac{m}{2}} $.

Then we have: $ T(2^m) = 2 T(2^{\frac{m}{2}}) + \log {2^m} = 2 T(2^{\frac{m}{2}}) + m $.

We denote the running time in terms of $ m $ is $ S(m) $, so $ S(m) = T(2^m) $, where $ m = \log n $. so we have $ S(m) = 2S(\frac{m}{2})+ m $.

Now this recurrence can in in the form of $ T(m) = aT(\frac{m}{b})+ f(m) $, where $ a=2 $, $ b=2 $, and $ f(m)=m $.

$ f(m) = m = \Theta(n^{\log _{b}{a}}) = \Theta(n) $. So the second case of master's theorem applies, we have $ S(k) = \Theta(k^{\log _{b}{a}} \log k) = \Theta(k \log k) $.

Replace back with $ T(2^m) =S(m) $, and $ m = \log_2 n $, we have $ T(n) = \Theta((\log n) (\log \log n)) $.

For the given recurrence, we replace n with $ 2^m $ and denote the running time as $ S(m) $. Thus,we have $ S(m) = T(2^m) = 2 T(2^{\frac{m}{2}}) + m $

(b) $ 3^{f(n)} $ is NOT $ O(3^{g(n)} $, here is an counter example: Let $ f(n) = n $ and $ g(n)=\frac{n}{2} $. Then </math>f(n) = O(g(n))</math>.

Now, $ 3^{f(n)}=3^n $, $ f(3^{f(n)})=O(3^n) $; however, $ O(3^{g(n)})=O(3^{\frac{n}{2}}) $. So $ f(3^{f(n)}) \neq O(3^{g(n)}) $.

Back to QE CE question 1, August 2013

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva