(Created page with "3) a) \includegraphics[width=\linewidth]{pec2} <math> \begin{align*} \text{\underline{BC's}:}& &E_{1t}&= E_{2t}\\ & &D_{1n}-D_{2n}&=\rho_s \end{align*} </math> <math> \beg...")
 
 
Line 3: Line 3:
 
a)
 
a)
  
\includegraphics[width=\linewidth]{pec2}
+
[[Image:pec2.jpg|Alt text|270x222px]]
  
 
<math>
 
<math>
 
\begin{align*}
 
\begin{align*}
\text{\underline{BC's}:}& &E_{1t}&= E_{2t}\\
+
\text{BC's:}& &E_{1t}&= E_{2t}\\
 
& &D_{1n}-D_{2n}&=\rho_s
 
& &D_{1n}-D_{2n}&=\rho_s
 
\end{align*}
 
\end{align*}
Line 14: Line 14:
 
<math>
 
<math>
 
\begin{equation*}
 
\begin{equation*}
\text{In PEC, <math>\bar{E}=0<math>} \longrightarrow \left\{\begin{aligned} E_{1t}&=E_{2t}=0 \\ D_{1n}&=\rho_s \longleftarrow  
+
\text{In PEC, } \bar{E}=0 \longrightarrow \left\{\begin{aligned} E_{1t}&=E_{2t}=0 \\ D_{1n}&=\rho_s \longleftarrow  
\parbox{15em}{only normal component left equal \\ to charge on surface of PEC}
+
\text{only normal component left equal \\ to charge on surface of PEC}
 
\end{aligned} \right.
 
\end{aligned} \right.
 
\end{equation*}
 
\end{equation*}
Line 23: Line 23:
  
  
\includegraphics[width=\linewidth]{lnt}
+
[[Image:lnt.jpg|Alt text|270x222px]]
  
 
<math>
 
<math>

Latest revision as of 19:05, 18 June 2017

3)

a)

Alt text

$ \begin{align*} \text{BC's:}& &E_{1t}&= E_{2t}\\ & &D_{1n}-D_{2n}&=\rho_s \end{align*} $

$ \begin{equation*} \text{In PEC, } \bar{E}=0 \longrightarrow \left\{\begin{aligned} E_{1t}&=E_{2t}=0 \\ D_{1n}&=\rho_s \longleftarrow \text{only normal component left equal \\ to charge on surface of PEC} \end{aligned} \right. \end{equation*} $

b)


Alt text

$ \begin{align*} \bar{E}&=-\nabla V&&\\ &=-\left(\frac{\partial V}{\partial x}\hat{x}+\frac{\partial V}{\partial y}\hat{y}+\frac{\partial V}{\partial z}\hat{z}\right)\\ \end{align*} $


Assume equal potential surface along $ z $ ($ V_{oz} $) then

$ \begin{equation*} \bar{E}=-\left(\frac{\partial V}{\partial x}\hat{x}+\frac{\partial V}{\partial y}\hat{y}\right) \longleftarrow \text{perpendicular to <math>V_{oz}<math>} \end{equation*} $

$ \begin{align*} \text{\underline{Also}:}& &V_1-V_2&=-\int_1^2\bar{E}\cdot d\bar{l}&&\\ & &V_0-V_0&=-\int_1^2\bar{E}_t\cdot d\bar{l}_t=0&&\\ & & &\boxed{E_{t}=0}&&\\ & &V_3-V_4&=-\int_3^4\bar{E}\cdot d\bar{l}&&\\ & &V_0-V_4&=-\int_3^4\bar{E}_n\cdot d\bar{l}_n\neq0&&\\ & & &\boxed{E_{n}\neq0}&& \end{align*} $

$ \therefore $ $ \bar{E} $ must $ \bot $ to equal potential surface.

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics