(Created page with "2) <math> \begin{equation*} \boxed{d\bar{H}=\frac{I(\bar{R}')d\bar{l}'\times(\bar{R}-\bar{R}')}{4\pi\abs{\bar{R}-\bar{R}'}^3}} \end{equation*} </math> <math> \begin{align*}...")
 
Line 3: Line 3:
 
<math>
 
<math>
 
\begin{equation*}
 
\begin{equation*}
\boxed{d\bar{H}=\frac{I(\bar{R}')d\bar{l}'\times(\bar{R}-\bar{R}')}{4\pi\abs{\bar{R}-\bar{R}'}^3}}
+
\boxed{d\bar{H}=\frac{I(\bar{R}')d\bar{l}'\times(\bar{R}-\bar{R}')}{4\pi|\bar{R}-\bar{R}'|^3}}
 
\end{equation*}
 
\end{equation*}
 
</math>
 
</math>
Line 9: Line 9:
 
<math>
 
<math>
 
\begin{align*}
 
\begin{align*}
\text{\underline{along x}:}& & \bar{R}&=(0,0,0) \longrightarrow &&\bar{H}&=\int_1^{\infty}\frac{Idx\hat{x}\times(-x\hat{x})}{4\pi x^3}=0\\
+
\text{along x:}& & \bar{R}&=(0,0,0) \longrightarrow &&\bar{H}&=\int_1^{\infty}\frac{Idx\hat{x}\times(-x\hat{x})}{4\pi x^3}=0\\
 
& &\bar{R}'&=x\hat{x} &\\
 
& &\bar{R}'&=x\hat{x} &\\
& &\abs{\bar{R}-\bar{R}'}&=x && &\\
+
& &|\bar{R}-\bar{R}'|&=x && &\\
\text{\underline{along y}:}& & \bar{R}&=(0,0,0) \longrightarrow &&\bar{H}&=\int_1^{\infty}\frac{Idy\hat{y}\times(-y\hat{y})}{4\pi y^3}=0\\
+
\text{along y:}& & \bar{R}&=(0,0,0) \longrightarrow &&\bar{H}&=\int_1^{\infty}\frac{Idy\hat{y}\times(-y\hat{y})}{4\pi y^3}=0\\
& &\bar{R}'&=y\hat{y} &\\
+
& &|\bar{R}'|&=y\hat{y} &\\
& &\abs{\bar{R}-\bar{R}'}&=y && &
+
& &|\bar{R}-\bar{R}'|&=y && &
 
\end{align*}
 
\end{align*}
 
</math>
 
</math>
Line 20: Line 20:
 
<math>
 
<math>
 
\begin{equation*}
 
\begin{equation*}
\text{\underline{Superposition}: Total field} \qquad \boxed{\bar{H}=0}
+
\text{Superposition: Total field} \qquad \boxed{\bar{H}=0}
 
\end{equation*}
 
\end{equation*}
 
</math>
 
</math>

Revision as of 19:00, 18 June 2017

2)

$ \begin{equation*} \boxed{d\bar{H}=\frac{I(\bar{R}')d\bar{l}'\times(\bar{R}-\bar{R}')}{4\pi|\bar{R}-\bar{R}'|^3}} \end{equation*} $

$ \begin{align*} \text{along x:}& & \bar{R}&=(0,0,0) \longrightarrow &&\bar{H}&=\int_1^{\infty}\frac{Idx\hat{x}\times(-x\hat{x})}{4\pi x^3}=0\\ & &\bar{R}'&=x\hat{x} &\\ & &|\bar{R}-\bar{R}'|&=x && &\\ \text{along y:}& & \bar{R}&=(0,0,0) \longrightarrow &&\bar{H}&=\int_1^{\infty}\frac{Idy\hat{y}\times(-y\hat{y})}{4\pi y^3}=0\\ & &|\bar{R}'|&=y\hat{y} &\\ & &|\bar{R}-\bar{R}'|&=y && & \end{align*} $

$ \begin{equation*} \text{Superposition: Total field} \qquad \boxed{\bar{H}=0} \end{equation*} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett