(Created page with "1) a) <math> <math>P_{ave} = \int\frac{1}{2}Re[\bar{E}\times\bar{H}^*]d\bar{s}<math> <math>\left\{ \begin{array}{ll} A:area\\ n_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} \end{arra...")
 
 
(3 intermediate revisions by the same user not shown)
Line 4: Line 4:
  
 
<math>
 
<math>
<math>P_{ave} = \int\frac{1}{2}Re[\bar{E}\times\bar{H}^*]d\bar{s}<math>
+
P_{ave} = \int\frac{1}{2}Re[\bar{E}\times\bar{H}^*]d\bar{s}
<math>\left\{
+
\left\{
 
\begin{array}{ll}
 
\begin{array}{ll}
 
A:area\\
 
A:area\\
 
n_0 = \sqrt{\frac{\mu_0}{\epsilon_0}}
 
n_0 = \sqrt{\frac{\mu_0}{\epsilon_0}}
 
\end{array}
 
\end{array}
\right.<math>\\
+
\right.\\
 
</math>
 
</math>
for TEM: <math>P_{ave} = \frac{1}{2n_0}|E|^2(A)<math>\\
+
 
 +
for TEM: <math>P_{ave} = \frac{1}{2n_0}|E|^2(A)</math>\\
 +
 
 
<math>
 
<math>
<math>P_{ave} = \frac{1}{2n_0}|E|^2(0.02)(0.001)=10W<math>\\
+
P_{ave} = \frac{1}{2n_0}|E|^2(0.02)(0.001)=10W\\
<math>|E| = \sqrt{\frac{20n_0}{2\cdot10^{-5}}} = \sqrt{10n_0 10^5}<math>\\
+
|E| = \sqrt{\frac{20n_0}{2\cdot10^{-5}}} = \sqrt{10n_0 10^5}\\
<math>|E| =10^3\sqrt{n_0}<math>
+
|E| =10^3\sqrt{n_0}
 
</math>
 
</math>
  
Line 22: Line 24:
  
 
<math>
 
<math>
R_s =\frac{1}{\sigma\delta} = \frac{P}{\delta} = P\sqrt{\pi f\mu\sigma} = P\sqrt{\frac{\pi f \mu}{P}} = \sqrt{P\pi f \mu}
+
R_s =\frac{1}{\sigma\delta} = \frac{P}{\delta} = P\sqrt{\pi f\mu\sigma} = P\sqrt{\frac{\pi f \mu}{P}} = \sqrt{P\pi f \mu} \\
P = 10^{-5}\Omega\cdot m
+
 
R_s = \sqrt{(10^{-5})\pi(10^9)\mu_0} = \sqrt{\pi\mu_0 10^4}
+
P = 10^{-5}\Omega\cdot m \\
R_s=100\sqrt{\pi\mu_0}\Omega
+
 
 +
R_s = \sqrt{(10^{-5})\pi(10^9)\mu_0} = \sqrt{\pi\mu_0 10^4} \\
 +
 
 +
R_s=100\sqrt{\pi\mu_0}\Omega \\
 
</math>
 
</math>
  
Line 33: Line 38:
 
P_{ave_d} = \frac{1}{2}\int\sigma E^2dv
 
P_{ave_d} = \frac{1}{2}\int\sigma E^2dv
 
</math>
 
</math>
 +
 
\underline{Note}: field is only near the surface\\
 
\underline{Note}: field is only near the surface\\
 +
 
<math>
 
<math>
 
J_s =\sigma E_s
 
J_s =\sigma E_s
Line 48: Line 55:
 
2)
 
2)
  
[[Image:A1FO22009_1.png|Alt text|200x200px]]
+
[[Image:A1FO22009_1.png|Alt text|526x408px]]
  
\underline{Note}: See useful equations.
+
Note: See useful equations.
  
 
a)
 
a)
Line 61: Line 68:
  
 
<math>
 
<math>
\bar{P} = \bar{E}\times\bar{H}
+
\bar{P} = \bar{E}\times\bar{H} \\
\bar{P}_{ave} = \frac{1}{2}Re[\bar{E}\times H^*] = \frac{E_0^2}{2n_0}\hat{x} = \text{ (times - average PV)}
+
 
\bar{P} = \frac{E_0^2}{n_0}e^{-2j\beta_0x}\hat{x} = \sqrt{\frac{\mu_0}{\epsilon_0}}E_0e^{-2j\beta_0x}(\hat{x})
+
\bar{P}_{ave} = \frac{1}{2}Re[\bar{E}\times H^*] = \frac{E_0^2}{2n_0}\hat{x} = \text{ (times - average PV)} \\
 +
 
 +
\bar{P} = \frac{E_0^2}{n_0}e^{-2j\beta_0x}\hat{x} = \sqrt{\frac{\mu_0}{\epsilon_0}}E_0e^{-2j\beta_0x}(\hat{x}) \\
 +
 
 
</math>
 
</math>
  
Line 70: Line 80:
 
TE:  
 
TE:  
 
<math>
 
<math>
\Gamma = \frac{\frac{n_2}{\cos\theta_t}-\frac{n_1}{\cos\theta_i}}{\frac{n_2}{\cos\theta_t}+\frac{n_1}{\cos\theta_i}} = \frac{n_2\cos\theta_i-n_1\cos\theta_t}{n_2\cos\theta_i+n_1\cos\theta_i}\leftarrow \text{also can get from useful eqns,}
+
\Gamma = \frac{\frac{n_2}{\cos\theta_t}-\frac{n_1}{\cos\theta_i}}{\frac{n_2}{\cos\theta_t}+\frac{n_1}{\cos\theta_i}} = \frac{n_2\cos\theta_i-n_1\cos\theta_t}{n_2\cos\theta_i+n_1\cos\theta_i}\leftarrow \text{also can get from useful eqns,}\\
n_1\sin\theta_i = n_2\sin\theta_t
+
 
\theta_t = \sin^{-1}\bigg(\frac{1}{\sqrt{2}}\sin(45)\bigg) = \sin^{-1}\bigg(\frac{1}{\sqrt{2}}\frac{\sqrt{2}}{2}\bigg)=\sin^{-1}\bigg(\frac{1}{2}\bigg) =30^\circ = \theta_t
+
n_1\sin\theta_i = n_2\sin\theta_t \\
 +
 
 +
\theta_t = \sin^{-1}\bigg(\frac{1}{\sqrt{2}}\sin(45)\bigg) = \sin^{-1}\bigg(\frac{1}{\sqrt{2}}\frac{\sqrt{2}}{2}\bigg)=\sin^{-1}\bigg(\frac{1}{2}\bigg) =30^\circ = \theta_t \\
 
</math>
 
</math>
 +
 
<math>
 
<math>
 
\begin{align*}
 
\begin{align*}
Line 85: Line 98:
  
 
<math>
 
<math>
\Gamma = \frac{2(\frac{n_2}{\cos\theta_t})}{\frac{n_2}{\cos\theta_t} + \frac{n_1}{\cos\theta_i}} = \frac{2n_2}{n_2+\frac{\cos\theta_t}{\cos\theta_i}n_1}\hspace{1cm}\frac{\cos(30)}{\cos(45)} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}
+
\Gamma = \frac{2(\frac{n_2}{\cos\theta_t})}{\frac{n_2}{\cos\theta_t} + \frac{n_1}{\cos\theta_i}} = \frac{2n_2}{n_2+\frac{\cos\theta_t}{\cos\theta_i}n_1}\hspace{1cm}\frac{\cos(30)}{\cos(45)} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3} \\
\Gamma =\frac{\sqrt{\frac{\mu_0}{2\epsilon_0}}}{\sqrt{\frac{\mu_0}{2\epsilon_0}}+\sqrt{3}\sqrt{\frac{\mu_0}{\epsilon_0}}} = \frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}+\sqrt{3}} = \frac{1}{1+\sqrt{6}}
+
 
 +
\Gamma =\frac{\sqrt{\frac{\mu_0}{2\epsilon_0}}}{\sqrt{\frac{\mu_0}{2\epsilon_0}}+\sqrt{3}\sqrt{\frac{\mu_0}{\epsilon_0}}} = \frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}+\sqrt{3}} = \frac{1}{1+\sqrt{6}} \\
 +
 
 
\bar{E}_t = E_0\bigg( \frac{1}{1+\sqrt{6}}\bigg)e^{-j\beta_0(\hat{x}\cos15+\hat{y}\sin15)}\hat{z}\text{ wrong}
 
\bar{E}_t = E_0\bigg( \frac{1}{1+\sqrt{6}}\bigg)e^{-j\beta_0(\hat{x}\cos15+\hat{y}\sin15)}\hat{z}\text{ wrong}
 +
 
</math>
 
</math>
  
Line 93: Line 109:
 
3)
 
3)
  
approximate as rectangular waveguide and find cut-off frequency\\
+
approximate as rectangular waveguide and find cut-off frequency
 +
 
 
<math>
 
<math>
 
\omega_c\mu\epsilon = \bigg(\frac{m\pi}{a}\bigg)^2+\bigg(\frac{n\pi}{b}\bigg)^2
 
\omega_c\mu\epsilon = \bigg(\frac{m\pi}{a}\bigg)^2+\bigg(\frac{n\pi}{b}\bigg)^2
Line 100: Line 117:
 
b = 0.5m
 
b = 0.5m
 
</math>
 
</math>
lowest order mode: TE<math>_{10}<math>
+
 
 +
lowest order mode: TE<math>_{10}</math>
 +
 
 
<math>
 
<math>
 
f_c=\frac{c}{2}\sqrt{\bigg(\frac{1}{a}\bigg)^2} = \frac{c}{2a}
 
f_c=\frac{c}{2}\sqrt{\bigg(\frac{1}{a}\bigg)^2} = \frac{c}{2a}
Line 107: Line 126:
 
\lambda = \frac{c}{f_c} = 2a = 3m
 
\lambda = \frac{c}{f_c} = 2a = 3m
 
</math>
 
</math>
<math>\to<math> longest <math>\lambda<math> is twice the largest dimension.
+
 
 +
<math>\to</math> longest <math>\lambda</math> is twice the largest dimension.

Latest revision as of 16:06, 11 June 2017

1)

a)

$ P_{ave} = \int\frac{1}{2}Re[\bar{E}\times\bar{H}^*]d\bar{s} \left\{ \begin{array}{ll} A:area\\ n_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} \end{array} \right.\\ $

for TEM: $ P_{ave} = \frac{1}{2n_0}|E|^2(A) $\\

$ P_{ave} = \frac{1}{2n_0}|E|^2(0.02)(0.001)=10W\\ |E| = \sqrt{\frac{20n_0}{2\cdot10^{-5}}} = \sqrt{10n_0 10^5}\\ |E| =10^3\sqrt{n_0} $

b)

$ R_s =\frac{1}{\sigma\delta} = \frac{P}{\delta} = P\sqrt{\pi f\mu\sigma} = P\sqrt{\frac{\pi f \mu}{P}} = \sqrt{P\pi f \mu} \\ P = 10^{-5}\Omega\cdot m \\ R_s = \sqrt{(10^{-5})\pi(10^9)\mu_0} = \sqrt{\pi\mu_0 10^4} \\ R_s=100\sqrt{\pi\mu_0}\Omega \\ $

c)

$ P_{ave_d} = \frac{1}{2}\int\sigma E^2dv $

\underline{Note}: field is only near the surface\\

$ J_s =\sigma E_s \begin{align*} P_{ave}& = \frac{1}{2}|J_s|^2R_s(A)\\ & = \frac{\sigma^2}{2}|E|^2R_s(0.1)(0.02)\\ & = \frac{\sigma^2}{2}(10^6)n_0R_s(0.1)(0.02)\\ & = \frac{n_0\sigma^2}{2}(100)\sqrt{\pi\mu_0}(0.002)\\ & = \frac{n_0\sigma^2\sqrt{\pi\mu_0}}{10}\\ \end{align*} $


2)

Alt text

Note: See useful equations.

a)

$ \bar{H}_i = \frac{E_0}{n_0}e^{-j\beta_0x}(-\hat{y}) = \sqrt{\frac{\mu_0}{\epsilon_0}}E_0e^{-j\beta_0x}(-\hat{y}) $

b)

$ \bar{P} = \bar{E}\times\bar{H} \\ \bar{P}_{ave} = \frac{1}{2}Re[\bar{E}\times H^*] = \frac{E_0^2}{2n_0}\hat{x} = \text{ (times - average PV)} \\ \bar{P} = \frac{E_0^2}{n_0}e^{-2j\beta_0x}\hat{x} = \sqrt{\frac{\mu_0}{\epsilon_0}}E_0e^{-2j\beta_0x}(\hat{x}) \\ $

c)

TE: $ \Gamma = \frac{\frac{n_2}{\cos\theta_t}-\frac{n_1}{\cos\theta_i}}{\frac{n_2}{\cos\theta_t}+\frac{n_1}{\cos\theta_i}} = \frac{n_2\cos\theta_i-n_1\cos\theta_t}{n_2\cos\theta_i+n_1\cos\theta_i}\leftarrow \text{also can get from useful eqns,}\\ n_1\sin\theta_i = n_2\sin\theta_t \\ \theta_t = \sin^{-1}\bigg(\frac{1}{\sqrt{2}}\sin(45)\bigg) = \sin^{-1}\bigg(\frac{1}{\sqrt{2}}\frac{\sqrt{2}}{2}\bigg)=\sin^{-1}\bigg(\frac{1}{2}\bigg) =30^\circ = \theta_t \\ $

$ \begin{align*} \Gamma &=\frac{n_2\cos(45) - n_1\cos(30)}{n_2\cos(45) + n_1\cos(30)} = \frac{\sqrt{\frac{\mu_0}{2\epsilon_0}}\big(\frac{\sqrt{2}}{2}\big)-\sqrt{\frac{\mu_0}{\epsilon_0}}\big(\frac{\sqrt{3}}{2}\big)}{\sqrt{\frac{\mu_0}{2\epsilon_0}}\big(\frac{\sqrt{2}}{2}\big)+\sqrt{\frac{\mu_0}{\epsilon_0}}\big(\frac{\sqrt{3}}{2}\big)}=\frac{\frac{1}{2} - \frac{\sqrt{3}}{2}}{\frac{1}{2} + \frac{\sqrt{3}}{2}} = \bigg(\frac{1-\sqrt{3}}{1+\sqrt{3}}\bigg)\\ &= \frac{(1-\sqrt{3})(1+\sqrt{3})}{1+2\sqrt{3}+3} = \frac{1-3}{4+2\sqrt{3}} = \frac{-1}{2+\sqrt{3}}\\ \bar{E}_r &= E_0\bigg(\frac{1-\sqrt{3}}{1+\sqrt{3}}\bigg)e^{+j\beta_0y}\hat{z} \end{align*} $

d)

$ \Gamma = \frac{2(\frac{n_2}{\cos\theta_t})}{\frac{n_2}{\cos\theta_t} + \frac{n_1}{\cos\theta_i}} = \frac{2n_2}{n_2+\frac{\cos\theta_t}{\cos\theta_i}n_1}\hspace{1cm}\frac{\cos(30)}{\cos(45)} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3} \\ \Gamma =\frac{\sqrt{\frac{\mu_0}{2\epsilon_0}}}{\sqrt{\frac{\mu_0}{2\epsilon_0}}+\sqrt{3}\sqrt{\frac{\mu_0}{\epsilon_0}}} = \frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}+\sqrt{3}} = \frac{1}{1+\sqrt{6}} \\ \bar{E}_t = E_0\bigg( \frac{1}{1+\sqrt{6}}\bigg)e^{-j\beta_0(\hat{x}\cos15+\hat{y}\sin15)}\hat{z}\text{ wrong} $


3)

approximate as rectangular waveguide and find cut-off frequency

$ \omega_c\mu\epsilon = \bigg(\frac{m\pi}{a}\bigg)^2+\bigg(\frac{n\pi}{b}\bigg)^2 f_c = \frac{1}{2\sqrt{\mu\epsilon}}\sqrt{\bigg(\frac{m}{a}\bigg)^2 +\bigg(\frac{n}{b}\bigg)^2} a=1.5m\hspace{1cm}\text{ (longer)}\to x b = 0.5m $

lowest order mode: TE$ _{10} $

$ f_c=\frac{c}{2}\sqrt{\bigg(\frac{1}{a}\bigg)^2} = \frac{c}{2a} f_c = \frac{3\cdot10^8}{2(1.5)} = 10^8\frac{1}{5} f_c=0.1GHz \lambda = \frac{c}{f_c} = 2a = 3m $

$ \to $ longest $ \lambda $ is twice the largest dimension.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett