(Created page with "2016 AC-2 P1. (a) <math> X=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}=\begin{bmatrix} y \\ \dot{y} \end{bmatrix}</math> <math>\begin{cases} \dot{x}=\begin{bmatrix} \do...")
 
 
(One intermediate revision by the same user not shown)
Line 68: Line 68:
  
 
<math>y[k]=\begin{bmatrix}
 
<math>y[k]=\begin{bmatrix}
 +
-1 & 1
 +
\end{bmatrix}x[k]</math>
 +
 +
let <math>x_[k]=\begin{bmatrix}
 +
a\\
 +
b
 +
\end{bmatrix} \quad y[0]=\begin{bmatrix}
 +
-1 & 1
 +
\end{bmatrix}\begin{bmatrix}
 +
a\\
 +
b
 +
\end{bmatrix}=1</math>
 +
 +
<math> -a+b=1</math>
 +
 +
<math>y[1]=\begin{bmatrix}
 
-1 & 1  
 
-1 & 1  
 
\end{bmatrix}x[1]=\begin{bmatrix}
 
\end{bmatrix}x[1]=\begin{bmatrix}
Line 75: Line 91:
 
-1 & 2   
 
-1 & 2   
 
\end{bmatrix}x[0]=0</math>
 
\end{bmatrix}x[0]=0</math>
 +
 +
<math>x[1]=Ax[0]</math>
 +
 +
<math>3a+2b=0</math>
 +
 +
<math>\therefore a=-\frac{2}{5} \quad b=\frac{3}{5}</math>
 +
 +
<math>x[0]=\begin{bmatrix}
 +
-\frac{2}{5}\\
 +
\frac{3}{5}
 +
\end{bmatrix}</math>
 +
 +
ii)<math>x[0]=\begin{bmatrix}
 +
a\\
 +
b
 +
\end{bmatrix}  \quad x[2]=Ax[1]=A^2x[0]</math>
 +
 +
<math>A^2=0 \quad x[2]=0</math>
 +
 +
<math>y[2]=[-1 \quad 1]\quad  x[2]=0 \quad  y[1]=[-1 \quad 1] \quad x[1]=1</math>
 +
 +
<math>[-1\quad 1]\quad \begin{bmatrix}
 +
2 &4\\
 +
-1&2
 +
\end{bmatrix}\quad\begin{bmatrix}
 +
a\\
 +
b
 +
\end{bmatrix}=1</math>
 +
 +
we only have -3a-2b=1,so we can't uniquely determine a,b.
 +
 +
P3  (a)<math>\lambda I-A=\begin{bmatrix}
 +
\lambda+2&-4\\
 +
1&\lambda-2
 +
\end{bmatrix}</math>
 +
 +
<math>\lambda_1=\lambda_2=0</math>
 +
 +
<math>\begin{bmatrix}
 +
-2-\lambda_1 & 4\\
 +
-1 & 2-\lambda_1
 +
\end{bmatrix}\begin{bmatrix}
 +
u_1 \\
 +
u_2
 +
\end{bmatrix}=\begin{bmatrix}
 +
0\\
 +
0
 +
\end{bmatrix}</math>
 +
 +
<math>\begin{cases}
 +
-2u_1-\lambda_1u_1+4u_2=0\\
 +
-u_1+2u_2-\lambda_1u_2=0
 +
\end{cases}</math>
 +
 +
<math>u_1=2u_2</math>
 +
 +
<math> \therefore eigenvector \begin{bmatrix}
 +
u_1\\
 +
u_2
 +
\end{bmatrix}=\begin{bmatrix}
 +
2\\
 +
1
 +
\end{bmatrix}</math>
 +
 +
<math>J=MAM^{-1}</math>
 +
 +
(b)<math>e^{At}=L^{-1}\begin{bmatrix}
 +
(SI-A)^{-1}
 +
\end{bmatrix}=L^{-1}\begin{bmatrix}
 +
\frac{s-2}{s^2} & \frac{4}{s^2} \\
 +
\frac{-1}{s^2} & \frac{s+2}{s^2}
 +
\end{bmatrix}</math>
 +
 +
<math>L^{-1}\begin{bmatrix}
 +
\frac{s-2}{s^2}
 +
\end{bmatrix}= L^{-1}\begin{bmatrix}
 +
\frac{1}{s}-\frac{2}{s^2}
 +
\end{bmatrix}=1-2t</math>
 +
 +
<math>L^{-1}\begin{bmatrix}
 +
\frac{4}{s^2}
 +
\end{bmatrix}=4t</math>
 +
 +
<math>L^{-1}\begin{bmatrix}
 +
\frac{-1}{s^2}
 +
\end{bmatrix}=-t</math>
 +
 +
<math>L^{-1}\begin{bmatrix}
 +
\frac{s+2}{s^2}
 +
\end{bmatrix}=L^{-1}\begin{bmatrix}
 +
\frac{1}{s}+\frac{2}{s^2}
 +
\end{bmatrix}=1+2t</math>
 +
 +
<math>e^{At}=\begin{bmatrix}
 +
1-2t & 4t\\
 +
-t & 1+2t
 +
\end{bmatrix}</math>
 +
 +
(c)T(s)=<math>C(SI-A)^{-1}B</math>
 +
 +
=<math>[-1 \quad 1] \quad
 +
\begin{bmatrix}
 +
\frac{s-2}{s^2} & \frac{4}{s^2} \\
 +
\frac{-1}{s^2} & \frac{s+2}{s^2}
 +
\end{bmatrix} \quad
 +
\begin{bmatrix}
 +
2\\
 +
1
 +
\end{bmatrix}</math>
 +
 +
<math> =\frac{\begin{bmatrix}
 +
-1 & 1
 +
\end{bmatrix}}{s^2}\begin{bmatrix}
 +
2s-4+4 \\
 +
-2+s+2
 +
\end{bmatrix}</math>
 +
 +
<math> T(s)=\begin{bmatrix}
 +
-1 & 1
 +
\end{bmatrix}\begin{bmatrix}
 +
\frac{2}{s} \\
 +
\frac{1}{s}
 +
\end{bmatrix}=\frac{-2}{s}+\frac{1}{s}</math>
 +
 +
<math>T(s)=\frac{-1}{s} </math>
 +
 +
pole is at s=0.
 +
 +
<math> \therefore marginally \; stable.</math>
 +
 +
(d) Given <math>\dot{x}=Ax+Bu</math>
 +
 +
<math>Ax=\begin{bmatrix}
 +
-2 & u \\
 +
-1 & 2
 +
\end{bmatrix} x,\quad Bu=\begin{bmatrix}
 +
2 \\
 +
1
 +
\end{bmatrix} u</math>
 +
 +
<math> C=\begin{bmatrix}
 +
B & AB & A^2B
 +
\end{bmatrix}=\begin{bmatrix}
 +
2 & 0 \\
 +
1 & 0
 +
\end{bmatrix}</math>
 +
 +
<math> \therefore not \; controllable</math>
 +
 +
To make <math>x(1)=\begin{bmatrix}
 +
-u & -2
 +
\end{bmatrix}</math>
 +
 +
corres ponding characteristic equation.
 +
 +
<math> (s+u)(s+2)=0</math>
 +
 +
<math> s^2+6s+8=0</math>
 +
 +
<math> u=-kx </math>
 +
 +
<math>\dot{x}=(A-Bk) x</math>
 +
 +
<math> \begin{vmatrix}
 +
SI-(A-Bk)
 +
\end{vmatrix}=0</math>
 +
 +
<math> A-BK=\begin{bmatrix}
 +
-2 & 4\\
 +
-1 & 2
 +
\end{bmatrix}-\begin{bmatrix}
 +
2K_1 \\
 +
1K_2
 +
\end{bmatrix}</math>
 +
 +
<math>\begin{vmatrix}
 +
S+2+2k_1 & -4 \\
 +
1+k_2 & S-2
 +
\end{vmatrix}=0  \qquad \begin{bmatrix}
 +
A-Bk
 +
\end{bmatrix}=\begin{bmatrix}
 +
-2-2k_1 & 4 \\
 +
-1-k_2 & 2
 +
\end{bmatrix}</math>
 +
 +
<math> (S+2+2k_1)(S-2)+4(1+k_2)=0</math>
 +
 +
<math> 2k_1=6</math>
 +
 +
<math>  k_1=3 </math>
 +
 +
<math> uk_2=20</math>
 +
 +
<math> k_2=5</math>
 +
 +
<math> \therefore </math> control <math> u_{(t)}=-\begin{bmatrix}
 +
k_1 & k_2
 +
\end{bmatrix} x</math>
 +
 +
or <math> u_{(t)}=-\begin{bmatrix}
 +
3 & 5
 +
\end{bmatrix} x</math>
 +
 +
our goal is to have <math>x_{(1)}= -\begin{bmatrix}
 +
1 & 2
 +
\end{bmatrix}</math>
 +
 +
<math>(s-1)(s+2)=0</math>
 +
 +
<math>2k_1=-3</math>
 +
 +
<math>k_1=-\frac{3}{2}</math>
 +
 +
<math>uk_2=-4</math>
 +
 +
<math>2k_1=-3</math>
 +
 +
<math>k_2=-1</math>
 +
 +
<math>\therefore u_{(t)}=-\begin{bmatrix}
 +
k_1 & k_2
 +
\end{bmatrix} x =\begin{bmatrix}
 +
-\frac{3}{2} & -1
 +
\end{bmatrix} x </math>
 +
 +
e) consider <math>\dot{x}=A_{C1}X</math>
 +
 +
<math> A_{C1}=A-Bk</math>
 +
 +
<math> s^2+2k_1s-uk_1+uk_2=0</math>
 +
 +
<math> 1+ \frac{C_t(s)}{t(s)}=0</math>
 +
 +
<math>  \frac{C_t(s)}{t(s)}=s^2+2k_1s-uk_1+uk_2-1</math>
 +
 +
<math> \lim_{s \to 0} s\frac{C_t(s)}{t(s)}=\lim_{s \to 0} s(s^2+2k_1s-uk_1+uk_2-1)</math>
 +
 +
Final value is zero and no such controller is possible to design.
 +
 +
But for Bounded time period,it is possible to have solution of x(t). As we have already seen in previous problem.
 +
 +
<math> \alpha_1+\alpha_2=2k_1, \quad  \alpha_1\alpha_2=-uk_1+uk_2.</math>
 +
 +
<math> (s+\alpha_1)(s+\alpha_2)=0</math>
 +
 +
<math>\begin{cases}
 +
\alpha^2+(\alpha_1+\alpha_2)s+\alpha_1\alpha_2=0 \\
 +
s^2+2k_1s-uk_1+uk_2=0
 +
\end{cases}</math>
 +
 +
(f) <math>\dot{x}=\begin{bmatrix}
 +
-2      & 4    \\
 +
-1    & 2
 +
\end{bmatrix} x+\begin{bmatrix}
 +
2    \\
 +
1
 +
\end{bmatrix} u</math>
 +
 +
<math>y=\begin{bmatrix}
 +
-1      & 1
 +
\end{bmatrix} x \quad D=[0]</math>
 +
 +
<math>N=\begin{bmatrix}
 +
C    \\
 +
CA
 +
\end{bmatrix}=\begin{bmatrix}
 +
-1      & 1    \\
 +
1    & -2
 +
\end{bmatrix}</math>
 +
 +
The system is observable.
 +
 +
(g)  <math>\frac{Y(S)}{U(S)}=C[SI-A]^{-1}B+D</math>
 +
 +
<math>SI-A=\begin{bmatrix}
 +
S      & 0    \\
 +
0    & S
 +
\end{bmatrix}-\begin{bmatrix}
 +
-2      & 4    \\
 +
-1    & 2
 +
\end{bmatrix}</math>
 +
 +
<math> [SI-A]^{-1}=\frac{1}{S^2-4+4}\begin{bmatrix}
 +
S-2      & 4    \\
 +
-1    &  S+2
 +
\end{bmatrix}</math>
 +
 +
<math> \frac{Y(s)}{u(s)}==\begin{bmatrix}
 +
-1  & 1
 +
\end{bmatrix}\begin{bmatrix}
 +
\frac{s-2}{s^2}    & \frac{4}{s^2}    \\
 +
\frac{-1}{s^2}    & \frac{s+2}{s^2}
 +
\end{bmatrix}\begin{bmatrix}
 +
2    \\
 +
1
 +
\end{bmatrix} </math>
 +
 +
<math> H (s)= \frac{-1}{s} </math> marginally stable ,not BIBO.
 +
 +
(h)  Cant not resolve.

Latest revision as of 04:45, 22 May 2017

2016 AC-2 P1. (a) $ X=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}=\begin{bmatrix} y \\ \dot{y} \end{bmatrix} $

$ \begin{cases} \dot{x}=\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix}=\begin{bmatrix} x_2 \\ -2x_1 x_2-u x_1+2u \end{bmatrix}\\ y=x_1 \end{cases} $

(b) $ u \equiv 2 $

$ \dot{x} =\begin{bmatrix} x_2 \\ -2x_1 x_2-2x_1+4 \end{bmatrix}=\begin{bmatrix} x_2 \\ -2x_1 (x_2+1)+4 \end{bmatrix} $

let $ \begin{cases} -2x_1 (x_2+1)+4=0 \\ x_2=0 \end{cases} \Rightarrow \begin{cases} -2x_1 +4=0 \\ x_2=0 \end{cases} \Rightarrow \begin{cases} x_1=2 \\ x_2=0 \end{cases} $

$ \therefore The \; equilibrum\; point\; is \;x_e=\begin{bmatrix} 2 \\ 0 \end{bmatrix} $

(c) $ u \equiv 2 \quad x_e=\begin{bmatrix} 2 \\ 0 \end{bmatrix}, \quad let \;x=f(x) $

The Jacobin of $ \dot{x} $ is: $ \begin{align} Df(x)= \begin{bmatrix} 0 & 1 \\ -2x_1-2 & -2x_1 \end{bmatrix} \end{align} $

The linear dynamics around $ x_e $ is $ \frac{d}{dt}f(x)=\begin{bmatrix} 0 & 1 \\ -2 & -4 \end{bmatrix} f(x) $

which is stable, locally stable at $ x_e $.

P2. i) $ x[k+1]=A x[k] $

$ y[k]=\begin{bmatrix} -1 & 1 \end{bmatrix}x[k] $

let $ x_[k]=\begin{bmatrix} a\\ b \end{bmatrix} \quad y[0]=\begin{bmatrix} -1 & 1 \end{bmatrix}\begin{bmatrix} a\\ b \end{bmatrix}=1 $

$ -a+b=1 $

$ y[1]=\begin{bmatrix} -1 & 1 \end{bmatrix}x[1]=\begin{bmatrix} -1 & 1 \end{bmatrix}\begin{bmatrix} -2 & 4 \\ -1 & 2 \end{bmatrix}x[0]=0 $

$ x[1]=Ax[0] $

$ 3a+2b=0 $

$ \therefore a=-\frac{2}{5} \quad b=\frac{3}{5} $

$ x[0]=\begin{bmatrix} -\frac{2}{5}\\ \frac{3}{5} \end{bmatrix} $

ii)$ x[0]=\begin{bmatrix} a\\ b \end{bmatrix} \quad x[2]=Ax[1]=A^2x[0] $

$ A^2=0 \quad x[2]=0 $

$ y[2]=[-1 \quad 1]\quad x[2]=0 \quad y[1]=[-1 \quad 1] \quad x[1]=1 $

$ [-1\quad 1]\quad \begin{bmatrix} 2 &4\\ -1&2 \end{bmatrix}\quad\begin{bmatrix} a\\ b \end{bmatrix}=1 $

we only have -3a-2b=1,so we can't uniquely determine a,b.

P3 (a)$ \lambda I-A=\begin{bmatrix} \lambda+2&-4\\ 1&\lambda-2 \end{bmatrix} $

$ \lambda_1=\lambda_2=0 $

$ \begin{bmatrix} -2-\lambda_1 & 4\\ -1 & 2-\lambda_1 \end{bmatrix}\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}=\begin{bmatrix} 0\\ 0 \end{bmatrix} $

$ \begin{cases} -2u_1-\lambda_1u_1+4u_2=0\\ -u_1+2u_2-\lambda_1u_2=0 \end{cases} $

$ u_1=2u_2 $

$ \therefore eigenvector \begin{bmatrix} u_1\\ u_2 \end{bmatrix}=\begin{bmatrix} 2\\ 1 \end{bmatrix} $

$ J=MAM^{-1} $

(b)$ e^{At}=L^{-1}\begin{bmatrix} (SI-A)^{-1} \end{bmatrix}=L^{-1}\begin{bmatrix} \frac{s-2}{s^2} & \frac{4}{s^2} \\ \frac{-1}{s^2} & \frac{s+2}{s^2} \end{bmatrix} $

$ L^{-1}\begin{bmatrix} \frac{s-2}{s^2} \end{bmatrix}= L^{-1}\begin{bmatrix} \frac{1}{s}-\frac{2}{s^2} \end{bmatrix}=1-2t $

$ L^{-1}\begin{bmatrix} \frac{4}{s^2} \end{bmatrix}=4t $

$ L^{-1}\begin{bmatrix} \frac{-1}{s^2} \end{bmatrix}=-t $

$ L^{-1}\begin{bmatrix} \frac{s+2}{s^2} \end{bmatrix}=L^{-1}\begin{bmatrix} \frac{1}{s}+\frac{2}{s^2} \end{bmatrix}=1+2t $

$ e^{At}=\begin{bmatrix} 1-2t & 4t\\ -t & 1+2t \end{bmatrix} $

(c)T(s)=$ C(SI-A)^{-1}B $

=$ [-1 \quad 1] \quad \begin{bmatrix} \frac{s-2}{s^2} & \frac{4}{s^2} \\ \frac{-1}{s^2} & \frac{s+2}{s^2} \end{bmatrix} \quad \begin{bmatrix} 2\\ 1 \end{bmatrix} $

$ =\frac{\begin{bmatrix} -1 & 1 \end{bmatrix}}{s^2}\begin{bmatrix} 2s-4+4 \\ -2+s+2 \end{bmatrix} $

$ T(s)=\begin{bmatrix} -1 & 1 \end{bmatrix}\begin{bmatrix} \frac{2}{s} \\ \frac{1}{s} \end{bmatrix}=\frac{-2}{s}+\frac{1}{s} $

$ T(s)=\frac{-1}{s} $

pole is at s=0.

$ \therefore marginally \; stable. $

(d) Given $ \dot{x}=Ax+Bu $

$ Ax=\begin{bmatrix} -2 & u \\ -1 & 2 \end{bmatrix} x,\quad Bu=\begin{bmatrix} 2 \\ 1 \end{bmatrix} u $

$ C=\begin{bmatrix} B & AB & A^2B \end{bmatrix}=\begin{bmatrix} 2 & 0 \\ 1 & 0 \end{bmatrix} $

$ \therefore not \; controllable $

To make $ x(1)=\begin{bmatrix} -u & -2 \end{bmatrix} $

corres ponding characteristic equation.

$ (s+u)(s+2)=0 $

$ s^2+6s+8=0 $

$ u=-kx $

$ \dot{x}=(A-Bk) x $

$ \begin{vmatrix} SI-(A-Bk) \end{vmatrix}=0 $

$ A-BK=\begin{bmatrix} -2 & 4\\ -1 & 2 \end{bmatrix}-\begin{bmatrix} 2K_1 \\ 1K_2 \end{bmatrix} $

$ \begin{vmatrix} S+2+2k_1 & -4 \\ 1+k_2 & S-2 \end{vmatrix}=0 \qquad \begin{bmatrix} A-Bk \end{bmatrix}=\begin{bmatrix} -2-2k_1 & 4 \\ -1-k_2 & 2 \end{bmatrix} $

$ (S+2+2k_1)(S-2)+4(1+k_2)=0 $

$ 2k_1=6 $

$ k_1=3 $

$ uk_2=20 $

$ k_2=5 $

$ \therefore $ control $ u_{(t)}=-\begin{bmatrix} k_1 & k_2 \end{bmatrix} x $

or $ u_{(t)}=-\begin{bmatrix} 3 & 5 \end{bmatrix} x $

our goal is to have $ x_{(1)}= -\begin{bmatrix} 1 & 2 \end{bmatrix} $

$ (s-1)(s+2)=0 $

$ 2k_1=-3 $

$ k_1=-\frac{3}{2} $

$ uk_2=-4 $

$ 2k_1=-3 $

$ k_2=-1 $

$ \therefore u_{(t)}=-\begin{bmatrix} k_1 & k_2 \end{bmatrix} x =\begin{bmatrix} -\frac{3}{2} & -1 \end{bmatrix} x $

e) consider $ \dot{x}=A_{C1}X $

$ A_{C1}=A-Bk $

$ s^2+2k_1s-uk_1+uk_2=0 $

$ 1+ \frac{C_t(s)}{t(s)}=0 $

$ \frac{C_t(s)}{t(s)}=s^2+2k_1s-uk_1+uk_2-1 $

$ \lim_{s \to 0} s\frac{C_t(s)}{t(s)}=\lim_{s \to 0} s(s^2+2k_1s-uk_1+uk_2-1) $

Final value is zero and no such controller is possible to design.

But for Bounded time period,it is possible to have solution of x(t). As we have already seen in previous problem.

$ \alpha_1+\alpha_2=2k_1, \quad \alpha_1\alpha_2=-uk_1+uk_2. $

$ (s+\alpha_1)(s+\alpha_2)=0 $

$ \begin{cases} \alpha^2+(\alpha_1+\alpha_2)s+\alpha_1\alpha_2=0 \\ s^2+2k_1s-uk_1+uk_2=0 \end{cases} $

(f) $ \dot{x}=\begin{bmatrix} -2 & 4 \\ -1 & 2 \end{bmatrix} x+\begin{bmatrix} 2 \\ 1 \end{bmatrix} u $

$ y=\begin{bmatrix} -1 & 1 \end{bmatrix} x \quad D=[0] $

$ N=\begin{bmatrix} C \\ CA \end{bmatrix}=\begin{bmatrix} -1 & 1 \\ 1 & -2 \end{bmatrix} $

The system is observable.

(g) $ \frac{Y(S)}{U(S)}=C[SI-A]^{-1}B+D $

$ SI-A=\begin{bmatrix} S & 0 \\ 0 & S \end{bmatrix}-\begin{bmatrix} -2 & 4 \\ -1 & 2 \end{bmatrix} $

$ [SI-A]^{-1}=\frac{1}{S^2-4+4}\begin{bmatrix} S-2 & 4 \\ -1 & S+2 \end{bmatrix} $

$ \frac{Y(s)}{u(s)}==\begin{bmatrix} -1 & 1 \end{bmatrix}\begin{bmatrix} \frac{s-2}{s^2} & \frac{4}{s^2} \\ \frac{-1}{s^2} & \frac{s+2}{s^2} \end{bmatrix}\begin{bmatrix} 2 \\ 1 \end{bmatrix} $

$ H (s)= \frac{-1}{s} $ marginally stable ,not BIBO.

(h) Cant not resolve.

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn