(Created page with "AC-2 2014 P1. (a)i) <math>\begin{bmatrix}x_1(t)\\x_2(t)\end{bmatrix}=\begin{bmatrix}-1 &-\frac{1}{2}\\frac{1}{2} & -1\end{bmatrix}\begin{bmatrix}x_1(t) \\ x_2(t)\end{b...")
 
Line 3: Line 3:
 
P1.  
 
P1.  
 
(a)i)
 
(a)i)
<math>\begin{bmatrix}x_1(t)\\x_2(t)\end{bmatrix}=\begin{bmatrix}-1 &-\frac{1}{2}\\frac{1}{2} & -1\end{bmatrix}\begin{bmatrix}x_1(t) \\ x_2(t)\end{bmatrix}+\begin{bmatrix}frac{x_0(t)}{2}\\frac{x_3(t)}{2}\end{bmatrix}=\begin{bmatrix}-1 &-\frac{1}{2}\\frac{1}{2} & -1\end{bmatrix}\begin{bmatrix}x_1(t) \\ x_2(t)\end{bmatrix}+begin{bmatrix}frac{1}{2}&0 \\ 0& frac{1}{2}\end{bmatrix}\begin{bmatrix}x_0(t) \\ x_3(t)\end{bmatrix}</math>
+
<math>\begin{bmatrix}
 +
x_1(t)\\
 +
x_2(t)
 +
\end{bmatrix}=\begin{bmatrix}
 +
-1 &-\frac{1}{2}\\
 +
frac{1}{2} & -1
 +
\end{bmatrix}\begin{bmatrix}
 +
x_1(t) \\  
 +
x_2(t)
 +
\end{bmatrix}+\begin{bmatrix}
 +
frac{x_0(t)}{2}\\
 +
frac{x_3(t)}{2}
 +
\end{bmatrix}=\begin{bmatrix}
 +
-1 &-\frac{1}{2}\\
 +
frac{1}{2} & -1
 +
\end{bmatrix}\begin{bmatrix}
 +
x_1(t) \\
 +
x_2(t)
 +
\end{bmatrix}+begin{bmatrix}
 +
frac{1}{2}&0 \\  
 +
0& frac{1}{2}
 +
\end{bmatrix}\begin{bmatrix}
 +
x_0(t) \\
 +
x_3(t)
 +
\end{bmatrix}</math>
  
 
ii)
 
ii)

Revision as of 01:25, 21 May 2017

AC-2 2014

P1. (a)i) $ \begin{bmatrix} x_1(t)\\ x_2(t) \end{bmatrix}=\begin{bmatrix} -1 &-\frac{1}{2}\\ frac{1}{2} & -1 \end{bmatrix}\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}+\begin{bmatrix} frac{x_0(t)}{2}\\ frac{x_3(t)}{2} \end{bmatrix}=\begin{bmatrix} -1 &-\frac{1}{2}\\ frac{1}{2} & -1 \end{bmatrix}\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}+begin{bmatrix} frac{1}{2}&0 \\ 0& frac{1}{2} \end{bmatrix}\begin{bmatrix} x_0(t) \\ x_3(t) \end{bmatrix} $

ii)

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang