Line 24: | Line 24: | ||
<span style="color:green"> Lack of proof. Should mention the property of Poisson distribution to show the equivalence. See the proof in solution 2.</span> | <span style="color:green"> Lack of proof. Should mention the property of Poisson distribution to show the equivalence. See the proof in solution 2.</span> | ||
− | b) | + | b) So the impulse can be obtained by inverting Z-transform |
− | + | ||
<math> | <math> | ||
− | + | h(m,n) = ba^mu[m]a^nu[n] = ba^{m+n}u[m]u[n] | |
</math> | </math> | ||
Revision as of 16:09, 18 May 2017
Contents
ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS)
August 2014, Problem 2
- Problem 1 , 2
Solution 1
a) Take Z-transform on both sides, we have $ \begin{split} &Y(z_1,z_2) = bX(z_1,z_2)+aY(z_1,z_2)z_1^{-1}+aY(z_1,z_2)z_2^{-1}-a^2Y(z_1,z_2)z_1^{-1}z_2^{-1}\\ &Y(z_1,z_2) = bX(z_1,z_2) +Y(z_1,z_2)\left[az_1^{-1}+az_2^{-1}-a^2z_1^{-1}z_2^{-1}\right]\\ &Y(z_1,z_2)\left[1-az_1^{-1}-az_2^{-1}+a^2z_1^{-1}z_2^{-1} \right] = bX(z_1,z_2)\\ &\frac{Y(z_1,z_2)}{X(z_1,z_2)} = \frac{b}{1-az_1^{-1}-az_2^{-1}+a^2z_1^{-1}z_2^{-1}} = \frac{b}{(1-az_1^{-1})(1-az_2^{-1})}\\ \end{split} $
Lack of proof. Should mention the property of Poisson distribution to show the equivalence. See the proof in solution 2.
b) So the impulse can be obtained by inverting Z-transform $ h(m,n) = ba^mu[m]a^nu[n] = ba^{m+n}u[m]u[n] $
c) Solve the differential equation in b), we have
$ \lambda_x = \lambda_0e^{-\int^x_0\mu(t)dt} $
d) So the integral of the density, $ \int^T_0\mu(x)dx $ can be written as $ \int^T_0\mu(x)dx = -\log\left(\frac{\lambda_T}{\lambda_0}\right) $
e) $ \int^T_ \mu(x)dx \simeq -\log \left( \frac{Y_T}{Y_0} \right) $
Solution 2:
a). As we know $ P\left\{Y_x=k\right\} = \frac{e^{-\lambda_x}\lambda_x^k}{k!} $ is a Potion distribution, it is known that the expectation of a Poisson RV is $ \lambda_x $.
Proof:
$ \begin{split} E[Y_x] &= \sum^{+ \infty}_{k > 0} k \frac{e^{-\lambda_x}\lambda_x^k}{k!}\\ &= \sum^{+ \infty}_{k = 1} \frac{e^{-\lambda_x}\lambda_x^k}{(k-1)!}\\ &= \sum^{+ \infty}_{k = 1} \frac{e^{-\lambda_x}\lambda_x^{k-1}}{(k-1)!}\lambda_x\\ &= \lambda_xe^{-\lambda_x}\sum^{+ \infty}_{k = 0} \frac{\lambda_x^k}{k!}\\ &= \lambda_xe^{-\lambda_x}e^{\lambda_x}\\ &= \lambda_x\\ \end{split} $
So $ E[Y_x] = \lambda_x $
Here, it used $ \sum^{+ \infty}_{k = 0} \frac{\lambda_x^k}{k!} = e^{\lambda_x} $ to derive the final conclusion.
b). Because the number of photons will decrease when increasing the depth, $ d\lambda_x = -\lambda_x\mu(x)dx $
and
$ \frac{d\lambda_x}{dx} = -\lambda_x\mu(x) $
c). The final differential equation in b). is an ordinary differential equation. We can get the expression as
$ \lambda_x = \lambda_0e^{-\int^x_0\mu(t)dt} $
where $ \lambda_0 $ is the initial number of photons.
d). From part c). $ \frac{\lambda_x}{\lambda_0} = e^{-\int^x_0\mu(t)dt} $, so we have
$ \int^x_0\mu(t)dt = -\log\left(\frac{\lambda_T}{\lambda_0}\right) $
e). Because from a). and c)., we can get
$ \int^x_0\mu(t)dt = -\log\left(\frac{Y_T}{Y_0}\right) $
This photon attenuation question is very similar to other questions: for example 2017S-ECE637-Exam1, Problem 3. Related topics are projection problems(e.g.: 2013S-ECE637-Exam1, Problem 2; 2012S-ECE637-Exam1, Problem 3) and scan problems(e.g.: 2016QE-CS5, Problem 1).