Line 46: Line 46:
 
E[Y_x] &= \sum^{+ \infty}_{k > 0} k \frac{e^{-\lambda_x}\lambda_x^k}{k!}\\
 
E[Y_x] &= \sum^{+ \infty}_{k > 0} k \frac{e^{-\lambda_x}\lambda_x^k}{k!}\\
 
&= \sum^{+ \infty}_{k = 1} \frac{e^{-\lambda_x}\lambda_x^k}{(k-1)!}\\
 
&= \sum^{+ \infty}_{k = 1} \frac{e^{-\lambda_x}\lambda_x^k}{(k-1)!}\\
&= \sum^{+ \infty}_{k = 1} \frac{e^{-\lambda_x}\lambda_x^^{k-1}}{(k-1)!}\lambda_x\\
+
&= \sum^{+ \infty}_{k = 1} \frac{e^{-\lambda_x}\lambda_x^{k-1}}{(k-1)!}\lambda_x\\
 
&= \lambda_xe^{-\lambda_x}\sum^{+ \infty}_{k = 1} \frac{\lambda_x^k}{k!}\\
 
&= \lambda_xe^{-\lambda_x}\sum^{+ \infty}_{k = 1} \frac{\lambda_x^k}{k!}\\
 
&= \lambda_xe^{-\lambda_x}e^{\lambda_x}\\
 
&= \lambda_xe^{-\lambda_x}e^{\lambda_x}\\

Revision as of 15:09, 18 May 2017


ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS)

August 2014, Problem 1

Problem 1 , 2

Solution 1

a) $ E\left[Y_x\right] = \lambda_x $

Lack of proof. Should mention the property of Poisson distribution to show the equivalence. See the proof in solution 2.

b) Because the rate of absorption is proportional to the number of photons and the density of the material, so the attenuation of photons obeys the following equation

$ \frac{d\lambda_x}{dx} = -\mu(x)\lambda_x $

c) Solve the differential equation in b), we have

$ \lambda_x = \lambda_0e^{-\int^x_0\mu(t)dt} $

d) So the integral of the density, $ \int^T_0\mu(x)dx $ can be written as $ \int^T_0\mu(x)dx = -\log\left(\frac{\lambda_T}{\lambda_0}\right) $


e) $ \int^T_ \mu(x)dx \simeq -\log \left( \frac{Y_T}{Y_0} \right) $

Solution 2:

a). As we know $ P\left\{Y_x=k\right\} = \frac{e^{-\lambda_x}\lambda_x^k}{k!} $ is a Potion distribution, it is known that the expectation of a Poisson RV is $ \lambda_x $.

Proof:

$ \begin{split} E[Y_x] &= \sum^{+ \infty}_{k > 0} k \frac{e^{-\lambda_x}\lambda_x^k}{k!}\\ &= \sum^{+ \infty}_{k = 1} \frac{e^{-\lambda_x}\lambda_x^k}{(k-1)!}\\ &= \sum^{+ \infty}_{k = 1} \frac{e^{-\lambda_x}\lambda_x^{k-1}}{(k-1)!}\lambda_x\\ &= \lambda_xe^{-\lambda_x}\sum^{+ \infty}_{k = 1} \frac{\lambda_x^k}{k!}\\ &= \lambda_xe^{-\lambda_x}e^{\lambda_x}\\ &= \lambda_x\\ \end{split} <\math> ---- [[ECE-QE_CS5-2014|Back to QE CS question 1, August 2014]] [[ECE_PhD_Qualifying_Exams|Back to ECE QE page]]: $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett