(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
  
 
AC-2  P1.
 
AC-2  P1.
 +
 +
<math>\mathbf{a)} \quad e^{At}=\begin{bmatrix}
 +
-1    & -1  &  1\\
 +
-1    & 1    &  2\\
 +
1    & 1  & -2\\
 +
\end{bmatrix}\begin{bmatrix}
 +
e^{t}    &  0        &  0\\
 +
0        &  e^{-t}  &  0\\
 +
0        &  0      &  e^{0}\\
 +
\end{bmatrix}\begin{bmatrix}
 +
-2    &  -\frac{1}{2}    &    -\frac{3}{2}\\
 +
0      &  \frac{1}{2}      &  \frac{1}{2}\\
 +
-1    &        0        &            -1\\
 +
\end{bmatrix}</math>
 +
 +
=<math>\begin{bmatrix}
 +
          -e^{t}    &    -e^{-t}    &  1\\
 +
          -e^{t}    &    e^{-t}      &  2\\
 +
        e^{t}      &    e^{-t}      &  -2\\
 +
\end{bmatrix}\begin{bmatrix}
 +
          -2    &  -\frac{1}{2}      &  -\frac{3}{2}\\
 +
          0    &    \frac{1}{2}    &  \frac{1}{2}\\
 +
            -1    & 0              &    -1\\
 +
\end{bmatrix}</math>
 +
 +
=<math>\begin{bmatrix}
 +
    2e^{t}-1        &      \frac{1}{2}e^{t} -\frac{1}{2}e^{-t}      &      \frac{3}{2}e^{t}-\frac{1}{2}e^{-t}-1\\
 +
  2e^{t}-2        &      \frac{1}{2}e^{t}+\frac{1}{2}e^{-t}        &        \frac{1}{2}e^{t}+\frac{1}{2}e^{-t}-2\\
 +
  -2e^{t}+2        &      -\frac{1}{2}e^{t}+\frac{1}{2}e^{-t}      &        -\frac{3}{2}e^{t}+\frac{1}{2}e^{-t}+2\\
 +
\end{bmatrix}</math>
 +
 +
  
 
<math>\mathbf{b)}\quad\lambda_1=1,\quad\lambda_2=-1,\quad\lambda_3=0</math>, <math>\because\quad\lambda_1>0 \quad\therefore\quad unstable.</math>
 
<math>\mathbf{b)}\quad\lambda_1=1,\quad\lambda_2=-1,\quad\lambda_3=0</math>, <math>\because\quad\lambda_1>0 \quad\therefore\quad unstable.</math>
 +
  
 
<math>\mathbf{c)}\quad If \quad we \quad want \quad t  \to \infty, X(t) \to0</math>
 
<math>\mathbf{c)}\quad If \quad we \quad want \quad t  \to \infty, X(t) \to0</math>
  
<math>\quad  Model 1 \quad and \quad   Model 3 \quad need \quad to \quad be \quad zero.</math>
+
<math>\quad  Model \quad 1 \quad and \quad  Model \quad3 \quad need \quad to \quad be \quad zero.</math>
  
   <math>\omega_1^T X_[0]=0</math>
+
   <math>\omega_1^T X[0]=0</math>
  
   <math>\omega_3^T X_[0]=0</math>
+
   <math>\omega_3^T X[0]=0</math>
  
 
<math>\begin{bmatrix}
 
<math>\begin{bmatrix}
 
-2 & -\frac{1}{2} &-\frac{3}{2}\\
 
-2 & -\frac{1}{2} &-\frac{3}{2}\\
-1 & 0 & -1 \\\end{bmatrix}\quad X_[0]=0</math>
+
-1 & 0 & -1 \\\end{bmatrix} X[0]=0</math>
  
 
<math>\quad\therefore\quad X_1=-X_3  , X_2=X_3</math>
 
<math>\quad\therefore\quad X_1=-X_3  , X_2=X_3</math>
  
<math>\quad \therefore \quad X_[0]=\quad X_3\begin{bmatrix}
+
<math>\quad \therefore \quad X[0]=X_3\begin{bmatrix}
 
-1 \\
 
-1 \\
 
1 \\
 
1 \\
Line 33: Line 66:
 
<math>\quad If \quad we \quad want \quad to\quad remain\quad bounded</math>
 
<math>\quad If \quad we \quad want \quad to\quad remain\quad bounded</math>
  
<math>\quad  Model 2 \quad and \quad  Model  3 \quad are \quad already \quad bounded \quad when \quad t>0</math>
+
<math>\quad  Model \quad 2 \quad and \quad  3 \quad are \quad already \quad bounded \quad when \quad t \geqslant 0</math>
  
<math>\quad \therefore\omega_1^T X_[0]=0</math>
+
<math>\quad \therefore\omega_1^T X[0]=0</math>
  
 
<math>\begin{bmatrix}
 
<math>\begin{bmatrix}
 
-2 & -\frac{1}{2} &-\frac{3}{2}\\
 
-2 & -\frac{1}{2} &-\frac{3}{2}\\
\end{bmatrix} \quad X_[0]=0</math>
+
\end{bmatrix} X[0]=0</math>
  
<math>X_1=-\frac{1}{4} X_2-\frac{3}{4}X_3</math>
+
<math>\quad X_1=-\frac{1}{4} X_2-\frac{3}{4}X_3</math>
  
 
<math>\quad X=\begin{bmatrix}
 
<math>\quad X=\begin{bmatrix}
Line 109: Line 142:
 
1 \\ \end{bmatrix}\end{Bmatrix}</math>
 
1 \\ \end{bmatrix}\end{Bmatrix}</math>
  
 +
<math>(f \sim j)\quad Can't \quad resolve.</math>
  
  
 +
P2.<math>\Phi(t)=e^{\zeta_0^t\begin{bmatrix}
 +
-t  & 1\\
 +
0  & -1\\
 +
\end{bmatrix}dt}=e^{\begin{bmatrix}
 +
-\frac{1}{2}t^{2}  & 0\\
 +
0  & -t\\
 +
\end{bmatrix}}e^{\begin{bmatrix}
 +
0  & t \\
 +
0  & 0\\
 +
\end{bmatrix}}=\begin{bmatrix}
 +
e^{-\frac{1}{2}t^{2}}  & 0 \\
 +
0  & e^{-t}\\
 +
\end{bmatrix}\begin{bmatrix}
 +
1 & t \\
 +
0  & 1\\
 +
\end{bmatrix}</math>
  
 +
<math>\Phi(t)=\begin{bmatrix}
 +
e^{-\frac{1}{2}t^{2}}  & te^{-\frac{1}{2}t^{2}} \\
 +
0  & e^{-t}\\
 +
\end{bmatrix}</math>
  
 +
P3.<math>\quad Let \quad X[3]= \begin{bmatrix}
 +
1  & 1\\
 +
\end{bmatrix}^{t} ,\quad X[0]=\begin{bmatrix}
 +
0  & 0\\
 +
\end{bmatrix}^{t}</math>
  
 +
<math>\quad C_3 =\begin{bmatrix}
 +
B  &  AB  & A^2B\\
 +
\end{bmatrix} =\begin{bmatrix}
 +
1  &  1  &  0\\
 +
0  &  1  &  1\\
 +
\end{bmatrix}^{t}</math>
  
 
+
<math>\quad U =\begin{bmatrix}
 
+
u(2)\\
 
+
u(1)\\
 
+
u(0)\\
<math>\mathbf{d)} \quad X_1=r,X_2=-s,X_3=s  \quad
+
\end{bmatrix} =\quad C_3^{t} ( C_3C_3^{t})^{-1} X[3]=\begin{bmatrix}
 
+
  \frac{2}{3}     &  -\frac{1}{3}\\
X=r\begin{bmatrix}
+
    \frac{1}{3}     & \frac{1}{3}\\
1 \\
+
  - \frac{1}{3}     & \frac{2}{3}\\
0 \\
+
\end{bmatrix}\begin{bmatrix}
0
+
1\\
\end{bmatrix}+s\begin{bmatrix}
+
1\\
0 \\
+
\end{bmatrix}=\begin{bmatrix}
-1 \\
+
\frac{1}{3}\\
1
+
  \frac{2}{3}\\
\end{bmatrix}\\</math>
+
\frac{1}{3}\\
<math>Subspace\quad is \begin{Bmatrix}
+
\begin{bmatrix}
+
1 \\
+
0 \\
+
0
+
\end{bmatrix} ,& \begin{bmatrix}
+
0 \\
+
-\\
+
1
+
\end{bmatrix}  
+
\end{Bmatrix}.\\</math>
+
<math>\mathbf{e)} \quad \lambda I-A=\begin{bmatrix}
+
\lambda-1 & -1 & -1 \\
+
0 & \lambda & -1 \\
+
0 & 0 & \lambda+1
+
\end{bmatrix}\quad \lambda_1=1,\lambda_2=0,\lambda_3=-1\\</math>
+
<math>\qquad for \;\lambda_1=1 \qquad\begin{bmatrix}
+
\lambda I-A & B \end{bmatrix}=\begin{bmatrix}
+
0 & -1 & -1 & 1 \\
+
0 & 1 & -1 & 1 \\
+
0 & 0 & 2 & 0
+
\end{bmatrix}\\</math>
+
<math>\qquad for \;\lambda_2=0 \qquad\begin{bmatrix}
+
\lambda I-A & B \end{bmatrix}=\begin{bmatrix}
+
-1 & -1 & -1 & 1 \\
+
0 & 0 & -1 & 1 \\
+
0 & 0 & 1 & 0
+
\end{bmatrix}\\</math>
+
<math>\qquad for \;\lambda_3=-1 \qquad\begin{bmatrix}
+
\lambda I-A & B \end{bmatrix}=\begin{bmatrix}
+
-2 & -1 & -1 & 1 \\
+
0 & -1 & -1 & 1 \\
+
0 & 0 & 0 & 0
+
\end{bmatrix}
+
\qquad rank<3 \qquad must\;contain\;\lambda=-1
+
  \qquad  \therefore\; No.</math>
+
 
+
<math>\mathbf{f)} \quad \begin{bmatrix}
+
\lambda I-A \\
+
C \end{bmatrix}=\begin{bmatrix}
+
\lambda-1 & -1 & -1 \\
+
0 & \lambda & -1 \\
+
0 & 0 & \lambda+1 \\
+
0 & 1 & 1
+
 
\end{bmatrix}</math>
 
\end{bmatrix}</math>
  
<math>for\; \lambda_1=1 \quad \begin{bmatrix}
+
<math>\quad \therefore \quad U[0]=\frac{1}{3}, \quad U[1]=\frac{2}{3}, \quad U[2]=\frac{1}{3}</math>
\lambda I-A \\
+
C \end{bmatrix}=\begin{bmatrix}
+
0 & -1 & -1 \\
+
0 & 1 & -1 \\
+
0 & 0 & 2 \\
+
0 & 1 & 1
+
\end{bmatrix} \quad rank<3 \quad must\;have\;\lambda_1=1</math>
+
  
<math>for\; \lambda_2=0 \quad \begin{bmatrix}
+
<math>\quad Energy \quad is \quad U^{2}[0] +U^{2}[1] +U^{2} [2]= \frac{6}{9}= \frac{2}{3}</math>
\lambda I-A \\
+
C \end{bmatrix}=\begin{bmatrix}
+
-1 & -1 & -1 \\
+
0 & 0 & -1 \\
+
0 & 0 & 1 \\
+
0 & 1 & 1
+
\end{bmatrix}\\</math>
+
  
<math>for \lambda-3=-1\quad \begin{bmatrix}
+
P4.  <math>\quad ( X_1^{2}-1)( X_2-2)=0</math>
\lambda I-A \\
+
C \end{bmatrix}=\begin{bmatrix}
+
-2 & -1 & -1 \\
+
0 & -1 & -1 \\
+
0 & 0 & 0 \\
+
0 & 1 & 1
+
\end{bmatrix} \quad rank<3 \quad must\;have\;\lambda_3=-1</math>
+
  
<math>\because \;eigenvalues \left\{1,-1,2 \right\}\quad \therefore\;Yes.</math>
+
      <math>\quad -X_2( X_1^{2}+1)=0</math>
  
<math>A-LC=<math>\begin{bmatrix}
+
      <math>\quad soll:\quad X_1=\pm1    ,  \quad X_2=0</math>
1 & 1-L_1 & 1-L_1 \\
+
0 & -L_2 & 1-L_2 \\
+
0 & -L_3 & -1-L_3
+
\end{bmatrix}\quad LC=\begin{bmatrix}
+
0 & L_1 & L_1 \\
+
0 & L_2 & L_2 \\
+
0 & L_3 & L_3
+
\end{bmatrix}</math>
+
  
<math>\lambda I-\left(A-LC \right)=\begin{bmatrix}
+
<math>\quad X_{e1}=\begin{bmatrix}
\lambda-1 & L_1-1 & L_1-1 \\
+
1\\
0 & \lambda+L_2 & L_2-1 \\
+
0\\
0 & L_3 & \lambda+1+L_3
+
\end{bmatrix},\quad X_{e2}=\begin{bmatrix}
 +
-1\\
 +
0\\
 
\end{bmatrix}</math>
 
\end{bmatrix}</math>
  
For conditions <math>\quad\lambda_1=1,\quad\lambda_2=-1,\quad\lambda_3=-2</math>
+
<math> D f(X)=\begin{bmatrix}
 
+
2 X_1 X_2-4 X_1  &  X_1^{2}-1\\
<math>\begin{cases}
+
-2 X_1X_2    &  -X_1^{2}-1\\
3L_2 + 6L_3 = 9 \\
+
L_2 + 2L_3 = 3 \\
+
L_2=1 \\
+
L_3=1
+
\end{cases} \quad L=\begin{bmatrix}
+
2  \\
+
1 \\
+
1
+
 
\end{bmatrix}</math>
 
\end{bmatrix}</math>
  
<math>\mathbf{g)} \quad \because\;\lambda_1=1,\quad Not\;stable.</math>
+
<math> D f( X_{e1})=\begin{bmatrix}
 
+
-4  &   0 \\
<math>\mathbf{h)} \quad AU_1=\lambda_1 U_1 \quad AU_2=\lambda_2 U_2 \quad AU_3= \lambda_3 U_3\\</math>
+
0   &   -2\\
 
+
\end{bmatrix}     \quad all \quad\lambda_i\quad negative  \quad asy \quad stable</math>
<math>\begin{alignat}{2}
+
y & = C X_(t) =C[U_1 e^t (\omega_1^T X_{(0)})+U_2 e^0 (\omega_2^T X_{(0)})+U_3 e^{-t} (\omega_3^T X_{(0)})]\\
+
& = -\omega_2^T \omega_{(0)}\\
+
\end{alignat}</math>
+
 
+
<math>\therefore\;bounded</math>
+
 
+
<math>:)\;\because \; \frac{1}{s}\; has\; pole=0 \quad\therefore\;Not \; BIBO \;Stable.</math>
+
 
+
P2.
+
 
+
<math>\mathbf{(a)} \quad A=\frac{1}{2}\begin{bmatrix}
+
1 & -1 \\
+
-1 & -1
+
\end{bmatrix},\quad \lambda=0  </math>
+
  
<math>\begin{alignat}{1}
+
<math> D f( X_{e2})=\begin{bmatrix}
(0)^k & =\beta_0 ,\; k \to \infty \quad \beta_0=0\;\\
+
&   0  \\
\end{alignat}</math>
+
0 &  -2\\
 +
\end{bmatrix} \quad has \quad a\quad positive \quad \lambda,\quad unstable</math>

Latest revision as of 06:16, 17 May 2017

AC-2 P1.

$ \mathbf{a)} \quad e^{At}=\begin{bmatrix} -1 & -1 & 1\\ -1 & 1 & 2\\ 1 & 1 & -2\\ \end{bmatrix}\begin{bmatrix} e^{t} & 0 & 0\\ 0 & e^{-t} & 0\\ 0 & 0 & e^{0}\\ \end{bmatrix}\begin{bmatrix} -2 & -\frac{1}{2} & -\frac{3}{2}\\ 0 & \frac{1}{2} & \frac{1}{2}\\ -1 & 0 & -1\\ \end{bmatrix} $

=$ \begin{bmatrix} -e^{t} & -e^{-t} & 1\\ -e^{t} & e^{-t} & 2\\ e^{t} & e^{-t} & -2\\ \end{bmatrix}\begin{bmatrix} -2 & -\frac{1}{2} & -\frac{3}{2}\\ 0 & \frac{1}{2} & \frac{1}{2}\\ -1 & 0 & -1\\ \end{bmatrix} $

=$ \begin{bmatrix} 2e^{t}-1 & \frac{1}{2}e^{t} -\frac{1}{2}e^{-t} & \frac{3}{2}e^{t}-\frac{1}{2}e^{-t}-1\\ 2e^{t}-2 & \frac{1}{2}e^{t}+\frac{1}{2}e^{-t} & \frac{1}{2}e^{t}+\frac{1}{2}e^{-t}-2\\ -2e^{t}+2 & -\frac{1}{2}e^{t}+\frac{1}{2}e^{-t} & -\frac{3}{2}e^{t}+\frac{1}{2}e^{-t}+2\\ \end{bmatrix} $


$ \mathbf{b)}\quad\lambda_1=1,\quad\lambda_2=-1,\quad\lambda_3=0 $, $ \because\quad\lambda_1>0 \quad\therefore\quad unstable. $


$ \mathbf{c)}\quad If \quad we \quad want \quad t \to \infty, X(t) \to0 $

$ \quad Model \quad 1 \quad and \quad Model \quad3 \quad need \quad to \quad be \quad zero. $

 $ \omega_1^T X[0]=0 $
 $ \omega_3^T X[0]=0 $

$ \begin{bmatrix} -2 & -\frac{1}{2} &-\frac{3}{2}\\ -1 & 0 & -1 \\\end{bmatrix} X[0]=0 $

$ \quad\therefore\quad X_1=-X_3 , X_2=X_3 $

$ \quad \therefore \quad X[0]=X_3\begin{bmatrix} -1 \\ 1 \\ 1 \\ \end{bmatrix} $

$ \quad The \quad set\quad is\begin{Bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \end{Bmatrix} $

$ \quad If \quad we \quad want \quad to\quad remain\quad bounded $

$ \quad Model \quad 2 \quad and \quad 3 \quad are \quad already \quad bounded \quad when \quad t \geqslant 0 $

$ \quad \therefore\omega_1^T X[0]=0 $

$ \begin{bmatrix} -2 & -\frac{1}{2} &-\frac{3}{2}\\ \end{bmatrix} X[0]=0 $

$ \quad X_1=-\frac{1}{4} X_2-\frac{3}{4}X_3 $

$ \quad X=\begin{bmatrix} -\frac{1}{4} X_2-\frac{3}{4}X_3\\ X_2\\ X_3\\ \end{bmatrix}=X_2\begin{bmatrix} -\frac{1}{4}\\ 1\\ 0\\ \end{bmatrix} +X_3\begin{bmatrix} -\frac{3}{4}\\ 0\\ 1\\ \end{bmatrix} $

$ \quad \therefore \quad The \quad set\quad is\begin{Bmatrix} \begin{bmatrix} -\frac{1}{4} \\ 1 \\ 0\\ \end{bmatrix},\begin{bmatrix} -\frac{3}{4}\\ 0\\ 1\\ \end{bmatrix}\end{Bmatrix} $


$ \mathbf{d)} \quad C=\begin{bmatrix} B & AB & A^2B \end{bmatrix}=\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ -1 & -1 & -1 \end{bmatrix} $

$ \quad rank=1\ne \mbox 3,\quad not\quad controllable $

$ \quad The\quad reachable\quad subspace\quad is \begin{Bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \end{Bmatrix} $

$ \mathbf{e)} \quad O=\begin{bmatrix} \quad C\\ \quad CA\\ \quad CA^2 \\ \end{bmatrix} =\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} $

$ \quad rank=1\ne \mbox 3,\quad not \quad observable $

$ \quad unobservable \quad subspace\quad is \begin{Bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ \end{bmatrix},\begin{bmatrix} -1\\ 0 \\ 1 \\ \end{bmatrix}\end{Bmatrix} $

$ (f \sim j)\quad Can't \quad resolve. $


P2.$ \Phi(t)=e^{\zeta_0^t\begin{bmatrix} -t & 1\\ 0 & -1\\ \end{bmatrix}dt}=e^{\begin{bmatrix} -\frac{1}{2}t^{2} & 0\\ 0 & -t\\ \end{bmatrix}}e^{\begin{bmatrix} 0 & t \\ 0 & 0\\ \end{bmatrix}}=\begin{bmatrix} e^{-\frac{1}{2}t^{2}} & 0 \\ 0 & e^{-t}\\ \end{bmatrix}\begin{bmatrix} 1 & t \\ 0 & 1\\ \end{bmatrix} $

$ \Phi(t)=\begin{bmatrix} e^{-\frac{1}{2}t^{2}} & te^{-\frac{1}{2}t^{2}} \\ 0 & e^{-t}\\ \end{bmatrix} $

P3.$ \quad Let \quad X[3]= \begin{bmatrix} 1 & 1\\ \end{bmatrix}^{t} ,\quad X[0]=\begin{bmatrix} 0 & 0\\ \end{bmatrix}^{t} $

$ \quad C_3 =\begin{bmatrix} B & AB & A^2B\\ \end{bmatrix} =\begin{bmatrix} 1 & 1 & 0\\ 0 & 1 & 1\\ \end{bmatrix}^{t} $

$ \quad U =\begin{bmatrix} u(2)\\ u(1)\\ u(0)\\ \end{bmatrix} =\quad C_3^{t} ( C_3C_3^{t})^{-1} X[3]=\begin{bmatrix} \frac{2}{3} & -\frac{1}{3}\\ \frac{1}{3} & \frac{1}{3}\\ - \frac{1}{3} & \frac{2}{3}\\ \end{bmatrix}\begin{bmatrix} 1\\ 1\\ \end{bmatrix}=\begin{bmatrix} \frac{1}{3}\\ \frac{2}{3}\\ \frac{1}{3}\\ \end{bmatrix} $

$ \quad \therefore \quad U[0]=\frac{1}{3}, \quad U[1]=\frac{2}{3}, \quad U[2]=\frac{1}{3} $

$ \quad Energy \quad is \quad U^{2}[0] +U^{2}[1] +U^{2} [2]= \frac{6}{9}= \frac{2}{3} $

P4. $ \quad ( X_1^{2}-1)( X_2-2)=0 $

     $ \quad -X_2( X_1^{2}+1)=0 $
     $ \quad soll:\quad X_1=\pm1    ,  \quad X_2=0 $

$ \quad X_{e1}=\begin{bmatrix} 1\\ 0\\ \end{bmatrix},\quad X_{e2}=\begin{bmatrix} -1\\ 0\\ \end{bmatrix} $

$ D f(X)=\begin{bmatrix} 2 X_1 X_2-4 X_1 & X_1^{2}-1\\ -2 X_1X_2 & -X_1^{2}-1\\ \end{bmatrix} $

$ D f( X_{e1})=\begin{bmatrix} -4 & 0 \\ 0 & -2\\ \end{bmatrix} \quad all \quad\lambda_i\quad negative \quad asy \quad stable $

$ D f( X_{e2})=\begin{bmatrix} 4 & 0 \\ 0 & -2\\ \end{bmatrix} \quad has \quad a\quad positive \quad \lambda,\quad unstable $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett