Line 91: Line 91:
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}
   & {{h}_{2}}(m,n)=\sum\limits_{i=-N}^{N}{{b}_{i}\delta (m-i,j)=}\sum\limits_{i=-N}^{N}{{b}_{i}\delta (m-i)\ \delta(n)=}{b}_{m}\ \delta (n) \\  
+
   & {{h}_{2}}(m,n)=\sum\limits_{i=-N}^{N}{{b}_{i}\delta (m-i,n)=}\sum\limits_{i=-N}^{N}{{b}_{i}\delta (m-i)\ \delta(n)=}{b}_{m}\ \delta (n) \\  
 
\end{align}
 
\end{align}
 
</math>
 
</math>

Revision as of 19:34, 2 May 2017



ECE Ph.D. Qualifying Exam

Communication Networks Signal and Image processing (CS)

Question 5, August 2012(Published on May 2017)

Problem 1,2


Solution1:

a)

$ \begin{align} & {{h}_{1}}(m,n)=\sum\limits_{j=-N}^{N}{{a}_{j}\delta (m,n-j)=}{a}_{n}\delta (m) \\ & \delta (m,n)=\left\{ \begin{matrix} 1\ m=n=0 \\ 0\qquad O.W \\ \end{matrix}, \right. \delta (m,n-j)=\left\{ \begin{matrix} 1\qquad n=j \\ 0\qquad O.W \\ \end{matrix} \right. \\ \end{align} $

b)

$ \begin{align} & {{h}_{2}}(m,n)=\sum\limits_{i=-N}^{N}{{b}_{i}\delta (m-i,n)=}{b}_{m}\delta (n) \\ & \delta (m,n)=\left\{ \begin{matrix} 1\ m=n=0 \\ 0\qquad O.W \\ \end{matrix}, \right. \delta (m-i,n)=\left\{ \begin{matrix} 1\ m=i;\ n=0 \\ 0\qquad O.W \\ \end{matrix} \right. \\ \end{align} $

c)

$ \begin{align} & h(m,n)=\sum\limits_{i=-N}^{N}{\sum\limits_{j=-N}^{N}{{{b}_{i}}\ {{a}_{j}}^{{}}\delta (m-i,n-j)}}={{b}_{m}}\ {{a}_{n}} \\ & z(m,n)=\sum\limits_{i=-N}^{N}{{{b}_{i}}\ y(m-i,n)=}\sum\limits_{i=-N}^{N}{{{b}_{i}}\ \left( \sum\limits_{j=-N}^{N}{{{a}_{j}}\ x(m-i,n-j)} \right)=\sum\limits_{i=-N}^{N}{\sum\limits_{j=-N}^{N}{{{b}_{i}}\ {{a}_{j}}\ x(m-i,n-j)}}} \\ & \delta (m-i,n-j)=\left\{ \begin{matrix} 1\ m=i;\ n=j \\ 0\qquad O.W \\ \end{matrix} \right. \\ \end{align} $

d)

Number of multiplies per output point to implement each individual system = 2N+1. So, the number of multiplies per output point to implement each of the two individual systems is 2(2N+1) = 4N+2.

Number of multiplies per output point to implement the complete system with a single convolution is $ \left( 2N+1 \right)\left( 2N+1 \right)\text{ }=4{{N}^{2}}+4N+1 $

e)

Implementing the two systems in sequence requires less computation, but it is more complex and more sensitive to noise. Implementing the two systems in a single complete system requires more computation, but it is simpler, less sensitive to noise, and more stable.


Solution 2:

a)

$ \begin{align} & {{h}_{1}}(m,n)=\sum\limits_{j=-N}^{N}{{a}_{j}\delta (m,n-j)=}\sum\limits_{j=-N}^{N}{{a}_{j}\delta (m)\ \delta(n-j)=} {a}_{n}\ \delta (m) \\ \end{align} $

The answer is correct, but it's not obvious how the solution is derived. (See Solution 1)

b)

$ \begin{align} & {{h}_{2}}(m,n)=\sum\limits_{i=-N}^{N}{{b}_{i}\delta (m-i,n)=}\sum\limits_{i=-N}^{N}{{b}_{i}\delta (m-i)\ \delta(n)=}{b}_{m}\ \delta (n) \\ \end{align} $

The answer is correct, but it's not obvious how the solution is derived. (See Solution 1)

c)

$ \begin{align} & h(m,n)=\sum\limits_{i=-N}^{N}{\sum\limits_{j=-N}^{N}{{{b}_{i}}\ {{a}_{j}}\ \delta (m-i,n-j)}}=\sum\limits_{i=-N}^{N}{\sum\limits_{j=-N}^{N}{{{b}_{i}}\ {{a}_{j}}\ \delta (m-i)\ \delta (n-j)}}={{b}_{m}}\ {{a}_{n}} \\ \end{align} $

The answer is correct, but it's not obvious how the solution is derived. (See Solution 1)

d)

Individually: $ 2(2N+1)=4N+2 $
Complete system: $ \left( 2N+1 \right)\left( 2N+1 \right)\text{ }=4{{N}^{2}}+4N+1 $

e)

Fewer multipliers are required when implementing individually, but the system is more complicated.

More complete for the complete system.

The Student didn't mention advantage/disadvantage of the complete system, it is just mentioned that "More complete for the complete system". (See Solution 1)


Related Problem

Consider the following 2-D LSI systems. The first system (S1) has input x(m, n) and output y(m, n), and the second system (S2) has input y(m, n) and output z(m, n).

$ \begin{align} & y(m,n)=ay(m,n-1)+x(m,n)\qquad (S1) \\ & z(m,n)=bz(m-1,n)+y(m,n)\qquad (S2) \\ \end{align} $

The third system (S3) is formed by the composition of (S1) and (S2) with input x(m, n) and output z(m,n) and impulse response $ {{h}_{3}}(m,n) $.

a) Calculate the 2-D impulse response, $ {{h}_{1}}(m,n) $, of the first system (S1).

b) Calculate the 2-D impulse response, $ {{h}_{2}}(m,n) $, of the second system (S2).

c) Calculate the 2-D impulse response, $ {{h}_{3}}(m,n) $, of the complete system (S3).

d) Calculate the 2-D transfer function, $ {{H}_{1}}({z}_{1},{z}_{2}) $, of the first system (S1).

e) Calculate the 2-D transfer function, $ {{H}_{3}}({z}_{1},{z}_{2}) $, of the first system (S3).

Refer to ECE637 Spring 2014 Exam1 Problem1.


Back to ECE QE page:

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva