(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
[[Category:ECE]]
 
[[Category:ECE]]
 
[[Category:QE]]
 
[[Category:QE]]
[[Category:CNSIP]]
+
[[Category:CE]]
 
[[Category:problem solving]]
 
[[Category:problem solving]]
[[Category:random variables]]
+
[[Category:algorithms]]
[[Category:probability]]
+
  
  
Line 13: Line 12:
  
 
<font size= 4>
 
<font size= 4>
Communication, Networking, Signal and Image Processing (CS)
+
Computer Engineering(CE)
  
Question 1: Probability and Random Processes
+
Question 1: Algorithms
 
</font size>
 
</font size>
  
Line 21: Line 20:
 
</center>
 
</center>
 
----
 
----
===Solution 1===
 
Let <math>\lambda = \frac{1}{\mu}</math>, then <math>E(X)=E(Y)=\frac{1}{\lambda}</math>.
 
 
<math>
 
\phi_{X+Y}=E[e^{it(X+Y)}]=\int_{X}\int_{Y}e^{it(X+Y)}p(x,y)dxdy
 
</math>
 
 
As X and Y are independent
 
 
<math>
 
\phi_{X+Y}=\int_{X}\int_{Y}e^{it(x+y)}p(x)p(y)dxdy = \int_{X}e^{itx}p(x)dx\int_{Y}e^{ity}p(y)dy=\phi_{X}\phi_{Y}
 
</math>
 
 
And
 
<math>
 
\phi_{X}=E[e^{itX}]=\int_{-\infty}^{\infty}e^{itx}\lambda e^{-\lambda x} dx \\
 
= \lambda \int_{-\infty}^{\infty}e^{-(\lambda -iu)x} dx = -\frac{\lambda}{\lambda-iu}e^{-(\lambda-iu)x}|_0^\infty\\
 
=\frac{\lambda}{\lambda-iu}
 
</math>
 
 
So
 
<math>
 
\phi_{X+Y}=E[e^{it(X+Y)}]=\phi_{X}\phi_{Y} =( \frac{\lambda}{\lambda-iu})^2=\frac{1}{(1+iu\mu)^2}
 
</math>
 
 
===Solution 2===
 
<math>
 
\phi_X(w)=E[e^{iwX}]=\int_0^{+\infty}e^{iwX}\frac{1}{\mu}e^{-\frac{x}{\mu}}dx=e^{X(iw-\frac{1}{\mu})}\frac{1}{\mu}\frac{1}{iw-\frac{1}{\mu}}|_0^{+\infty}\\
 
= 0 - \frac{1}{\mu}\cdot\frac{1}{iw-\frac{1}{\mu}}=\frac{1}{1-iw\mu}\\
 
\phi_{X+Y}(w)=E[e^{iw(X+Y)}]\\
 
=\int\int e^{iw(X+Y)}f_X(x)f_Y(y)dxdy = \int e^{iwx}f_X(x)dx \cdot \int e^{iwy}f_Y(y)dy=\phi_X(w)\phi_Y(w)\\
 
=\frac{1}{(1+iw\mu)^2}
 
</math>
 
 
 
===Solution 3===
 
===Solution 3===
For this problem, it is very useful to note that for any independent random variables <math>X</math> and <math>Y</math> and their characteristic functions <math>\phi_X(\omega), \phi_Y(\omega)</math> we have the following property:
+
For this problem, it is very useful to note that for any independent random variables <math>X</math> and <math>Y</math> and their characteristic functions <math>\phi_X(\omega),\,\phi_Y(\omega)</math> we have the following property:
  
 
<math>
 
<math>
 
\phi_{X+Y}(\omega) = \phi_X(\omega)\phi_Y(\omega)
 
\phi_{X+Y}(\omega) = \phi_X(\omega)\phi_Y(\omega)
</math>.
+
</math>
  
 
We then note that the characteristic function of an exponential random variable <math>Z</math> is written as
 
We then note that the characteristic function of an exponential random variable <math>Z</math> is written as
  
 
<math>
 
<math>
\phi_{Z}(\omega) = \frac{\lambda}{\lambda - i\omega}
+
\phi_Z (\omega) = \frac{\lambda}{\lambda - i\omega}
 
</math>
 
</math>
  
where <math>\lambda</math> parameterizes the exponential distribution. As such, we can write the characteristic function of <math>X + Y</math> as
+
where <math>\lambda</math> parameterizes the exponential distribution. As such, we can write the characteristic function of <math>X+Y</math> as
  
 
<math>
 
<math>
\phi_{X+Y}(\omega) = \phi_X(\omega)\phi_Y(\omega) = \left(\frac{\lambda}{\lambda - i\omega}\right)^2
+
\phi_{X+Y}(\omega) = \phi_X(\omega)\phi_Y(\omega) \\
</math>.
+
= \left(\frac{\lambda}{\lambda-i\omega}\right)^2
 +
</math>
  
 
Next, we recall that the mean of an exponential random variable is equal to the inverse of its parameter, i.e. <math>\frac{1}{\lambda}</math>. Then the above expression becomes
 
Next, we recall that the mean of an exponential random variable is equal to the inverse of its parameter, i.e. <math>\frac{1}{\lambda}</math>. Then the above expression becomes
  
 
<math>
 
<math>
\phi_{X+Y}(\omega) = \left(\frac{\frac{1}{\mu}}{\frac{1}{\mu} - i\omega}\right)^2.
+
\phi_{X+Y}(\omega) = \left(\frac{\frac{1}{\mu}}{\frac{1}{\mu}-i\omega}\right)^2
</math>.
+
</math>
  
Multiplying by <math>\frac{\mu}{\mu}</math> gives
+
Multiplying by <math>\frac{\mu^2}{\mu^2}</math> gives
  
 
<math>
 
<math>
Line 86: Line 52:
 
</math>
 
</math>
  
===Similar Problem===
 
  
Let <math>X(t)</math> be a Poisson random process with mean function <math>\mu(t)</math> and covariance function <math>C_{xx}(t_1,t_2)</math>. Find the <math>n^{th}</math>-order characteristic function of <math>X(t)</math>.
+
[[ECE-QE_CE1-2015|Back to QE CE question 1, August 2015]]
----
+
[[ECE-QE_CS1-2015|Back to QE CS question 1, August 2015]]
+
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 21:00, 7 March 2016


ECE Ph.D. Qualifying Exam

Computer Engineering(CE)

Question 1: Algorithms

August 2015


Solution 3

For this problem, it is very useful to note that for any independent random variables $ X $ and $ Y $ and their characteristic functions $ \phi_X(\omega),\,\phi_Y(\omega) $ we have the following property:

$ \phi_{X+Y}(\omega) = \phi_X(\omega)\phi_Y(\omega) $

We then note that the characteristic function of an exponential random variable $ Z $ is written as

$ \phi_Z (\omega) = \frac{\lambda}{\lambda - i\omega} $

where $ \lambda $ parameterizes the exponential distribution. As such, we can write the characteristic function of $ X+Y $ as

$ \phi_{X+Y}(\omega) = \phi_X(\omega)\phi_Y(\omega) \\ = \left(\frac{\lambda}{\lambda-i\omega}\right)^2 $

Next, we recall that the mean of an exponential random variable is equal to the inverse of its parameter, i.e. $ \frac{1}{\lambda} $. Then the above expression becomes

$ \phi_{X+Y}(\omega) = \left(\frac{\frac{1}{\mu}}{\frac{1}{\mu}-i\omega}\right)^2 $

Multiplying by $ \frac{\mu^2}{\mu^2} $ gives

$ \phi_{X+Y}(\omega) = \left(\frac{1}{1-i\omega\mu}\right)^2 $


Back to QE CE question 1, August 2015

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch