(25 intermediate revisions by 2 users not shown)
Line 21: Line 21:
 
</center>
 
</center>
 
----
 
----
 +
===Solution 1===
 +
First of all, the conditional distribution can be written as:
 +
 
<math>
 
<math>
\begin{align*}
 
 
P(X=x|X+Y=n)
 
P(X=x|X+Y=n)
&=\frac{P(X=x, X+Y=n)}{P(X+Y=n)}\\
+
=\frac{P(X=x, X+Y=n)}{P(X+Y=n)}
&=\frac{P(X=x, Y=n-x)}{P(X+Y=n)}
+
=\frac{P(X=x, Y=n-x)}{P(X+Y=n)}
\end{align*}
+
</math>
\begin{align*}
+
 
 +
And
 +
 
 +
<math>
 
P(X=x, Y=n-x)
 
P(X=x, Y=n-x)
&=P(X=x)P(Y=n-x)\\
+
=P(X=x)P(Y=n-x)\\
&=\frac{e^{-\lambda_1}\lambda^x}{x!}\times \frac{e^{-\lambda_2}\lambda^(n-x)}{(n-x)!}\\
+
=\frac{e^{-\lambda_1}\lambda^x}{x!}\times \frac{e^{-\lambda_2}\lambda^(n-x)}{(n-x)!}\\
&=\frac{e^{-(\lambda_1+\lambda_2)}}{x!}
+
=\frac{e^{-(\lambda_1+\lambda_2)}}{x!}
 
\left(
 
\left(
 
\begin{array}{c}
 
\begin{array}{c}
Line 38: Line 43:
 
\right)
 
\right)
 
\lambda_1^x\lambda_2^{n-x}
 
\lambda_1^x\lambda_2^{n-x}
\end{align*}
+
</math>
\begin{align*}
+
 
{P(X+Y=n)}
+
Also
&={\sum_{k=0}^{k=n}P(X=k,Y=n-k)}\\
+
 
&={\sum_{k=0}^{k=n}P(X=k)P(Y=n-k)}\\
+
<math>
&=\frac{e^{-(\lambda_1+\lambda_2)}}{n!}\sum_{k=0}^{k=n}
+
P(X+Y=n)
 +
={\sum_{k=0}^{k=n}P(X=k,Y=n-k)}
 +
={\sum_{k=0}^{k=n}P(X=k)P(Y=n-k)}\\
 +
=\frac{e^{-(\lambda_1+\lambda_2)}}{n!}\sum_{k=0}^{k=n}
 
\left(
 
\left(
 
\begin{array}{c}
 
\begin{array}{c}
Line 49: Line 57:
 
\end{array}
 
\end{array}
 
\right)
 
\right)
\lambda_1^k\lambda_2^{n-k}
+
\lambda_1^k\lambda_2^{n-k}\\
&=\frac{e^{-(\lambda_1+\lambda_2)}}{n!}(\lambda_1+\lambda_2)^n
+
=\frac{e^{-(\lambda_1+\lambda_2)}}{n!}(\lambda_1+\lambda_2)^n
\end{align*}
+
</math>
So  
+
 
\begin{align*}
+
So, we get
P(X=x|X+Y=n) &=  
+
<math>
 +
P(X=x|X+Y=n) =  
 
\left(
 
\left(
 
\begin{array}{c}
 
\begin{array}{c}
Line 61: Line 70:
 
\right)
 
\right)
 
(\frac{\lambda_1}{\lambda_1+\lambda_2})^x(\frac{\lambda_2}{\lambda_1+\lambda_2})^{n-x}
 
(\frac{\lambda_1}{\lambda_1+\lambda_2})^x(\frac{\lambda_2}{\lambda_1+\lambda_2})^{n-x}
\end{align*}
 
 
</math>
 
</math>
 +
 +
===Solution 2===
 +
Let <math>Z=X+Y</math>,
 +
 +
<math>P_Z(k)=P_Z(z=k)=P_Z(x+y=k)\\
 +
=\sum_{i=0}^{k}P(x=i)(y=k-i)=\sum_{i=0}^{k}\frac{\lambda_1^i e^{\lambda_1}}{i!}\cdot\frac{\lambda_2^{k-i}e^{-\lambda_2}}{(k-i)!}
 +
=e^{-\lambda_1-\lambda_2}\cdot \frac{(\lambda_1+\lambda_2)^k}{k!}
 +
</math>
 +
 +
Using <math>(a+b)^k=\sum_{i=0}^{k}a^ib^{(k-i)}\cdot \frac{k!}{i!(k-i)!} </math>
 +
 +
Therefore,
 +
 +
<math>
 +
P_{X|Z}(x=k|z=n)=\frac{P(x=k,z=n)}{P(z=n)}=\frac{P(x=k,x+y=n)}{P(z=n)}=\frac{P(x=k,y=n-k)}{P(z=n)}\\
 +
=\frac{\lambda_1^k e^{-\lambda_1}}{k!}\frac{\lambda_2^{n-k} e^{-\lambda_2}}{(n-k)!}\frac{n!}{e^{-\lambda_1}e^{-\lambda_2}(\lambda_1+\lambda_2)^n}
 +
= \frac{\lambda_1^k \lambda_2^{n-k} }{(\lambda_1+\lambda_2)^n}\frac{n!}{k!(n-k)!}
 +
</math>
 +
 +
===Solution 3===
 +
 +
We will view this problem through the lens of Bayes' Theorem. As such, we can write the conditional distribution as
 +
 +
<math>
 +
P(X = x | X+Y = n) = \frac{P(X = x, X+Y = n)}{P(X+Y = n)} = \frac{P(X = x, Y = n - X)}{\sum^n_{k = 0}P(X = k, Y = n - k)}
 +
</math>.
 +
 +
Since <math>X</math> and <math>Y</math> are independent, we can further write
 +
 +
<math>
 +
P(X = x | X+Y = n) = \frac{P(X = x)P(Y = n - X)}{\sum^n_{k = 0}(P(X=k)P(Y = n-k))}
 +
</math>.
 +
 +
Now let us separate the above expression into numerator and denominator. Recalling that <math>X</math> and <math>Y</math> are independent Poisson r.v.s, the numerator is given by
 +
 +
<math>
 +
P(X = x)P(Y = n - X) = \frac{e^{-\lambda_1}\lambda_1^x}{x!}\cdot\frac{e^{-\lambda_2}\lambda_2^{n-x}}{(n-x)!}
 +
</math>.
 +
 +
Multiplying the above by <math>\frac{n!}{n!}</math> gives
 +
 +
<math>
 +
P(X = x)P(Y = n - X) = \frac{e^{-\lambda_1 + \lambda_2}}{n!}{n\choose x}\lambda_1^x\lambda_2^{n-x}
 +
</math>.
 +
 +
Now let us examine the denominator. Again, we make use of the fact that <math>X</math> and <math>Y</math> are independent Poisson r.v.s to write
 +
 +
<math>
 +
\sum^n_{k = 0}(P(X=k)P(Y = n-k)) = \sum^n_{k = 0}\left(\frac{e^{-\lambda_1}\lambda_1^k}{k!}\frac{e^{-\lambda_2}\lambda_2^{n-k}}{(n-k)!}\right)
 +
</math>.
 +
 +
Again, we multiply by <math>\frac{n!}{n!}</math> to obtain
 +
 +
<math>
 +
\sum^n_{k = 0}(P(X=k)P(Y = n-k)) = \frac{e^{-\lambda_1 + \lambda_2}}{n!}\sum^n_{k = 0}{n\choose k}\lambda_1^k\lambda_2^{n-k}
 +
</math>.
 +
 +
We can make use of the binomial formula to simplify this expression. Recall that the binomial formula is given by
 +
 +
<math>
 +
(a+b)^n = \sum^n_{k = 0}{n\choose k}a^k b^{n - k}
 +
</math>.
 +
 +
We use this to write
 +
 +
<math>.
 +
\sum^n_{k = 0}(P(X=k)P(Y = n-k)) = \frac{e^{-\lambda_1 + \lambda_2}}{n!}\cdot(\lambda_1 + \lambda_2)^n
 +
</math>
 +
 +
Putting this all together, we can finally write
 +
 +
<math>
 +
P(X = x | X+Y = n) = \frac{\frac{e^{-\lambda_1 + \lambda_2}}{n!}{n\choose x}\lambda_1^x\lambda_2^{n-x}}{\frac{e^{-\lambda_1 + \lambda_2}}{n!}\cdot(\lambda_1 + \lambda_2)^n} = {n\choose x}\frac{\lambda_1^x\lambda_2^{n-x}}{(\lambda_1 + \lambda_2)^n}
 +
</math>
 +
 +
and we are done.
 +
 +
===Similar Problem===
 +
 +
If <math>X</math> and <math>Y</math> are independent binomial random variables with success probabilities <math>p</math> and <math>q</math> respectively, find the probability mass function of <math>X</math> when <math>X + Y = k</math>. In addition, investigate what happens to this p.m.f. when <math>p = q</math>.
 
----
 
----
 
[[ECE-QE_CS1-2015|Back to QE CS question 1, August 2015]]
 
[[ECE-QE_CS1-2015|Back to QE CS question 1, August 2015]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 22:04, 31 January 2016


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2015


Solution 1

First of all, the conditional distribution can be written as:

$ P(X=x|X+Y=n) =\frac{P(X=x, X+Y=n)}{P(X+Y=n)} =\frac{P(X=x, Y=n-x)}{P(X+Y=n)} $

And

$ P(X=x, Y=n-x) =P(X=x)P(Y=n-x)\\ =\frac{e^{-\lambda_1}\lambda^x}{x!}\times \frac{e^{-\lambda_2}\lambda^(n-x)}{(n-x)!}\\ =\frac{e^{-(\lambda_1+\lambda_2)}}{x!} \left( \begin{array}{c} n\\x \end{array} \right) \lambda_1^x\lambda_2^{n-x} $

Also

$ P(X+Y=n) ={\sum_{k=0}^{k=n}P(X=k,Y=n-k)} ={\sum_{k=0}^{k=n}P(X=k)P(Y=n-k)}\\ =\frac{e^{-(\lambda_1+\lambda_2)}}{n!}\sum_{k=0}^{k=n} \left( \begin{array}{c} n\\k \end{array} \right) \lambda_1^k\lambda_2^{n-k}\\ =\frac{e^{-(\lambda_1+\lambda_2)}}{n!}(\lambda_1+\lambda_2)^n $

So, we get $ P(X=x|X+Y=n) = \left( \begin{array}{c} n\\k \end{array} \right) (\frac{\lambda_1}{\lambda_1+\lambda_2})^x(\frac{\lambda_2}{\lambda_1+\lambda_2})^{n-x} $

Solution 2

Let $ Z=X+Y $,

$ P_Z(k)=P_Z(z=k)=P_Z(x+y=k)\\ =\sum_{i=0}^{k}P(x=i)(y=k-i)=\sum_{i=0}^{k}\frac{\lambda_1^i e^{\lambda_1}}{i!}\cdot\frac{\lambda_2^{k-i}e^{-\lambda_2}}{(k-i)!} =e^{-\lambda_1-\lambda_2}\cdot \frac{(\lambda_1+\lambda_2)^k}{k!} $

Using $ (a+b)^k=\sum_{i=0}^{k}a^ib^{(k-i)}\cdot \frac{k!}{i!(k-i)!} $

Therefore,

$ P_{X|Z}(x=k|z=n)=\frac{P(x=k,z=n)}{P(z=n)}=\frac{P(x=k,x+y=n)}{P(z=n)}=\frac{P(x=k,y=n-k)}{P(z=n)}\\ =\frac{\lambda_1^k e^{-\lambda_1}}{k!}\frac{\lambda_2^{n-k} e^{-\lambda_2}}{(n-k)!}\frac{n!}{e^{-\lambda_1}e^{-\lambda_2}(\lambda_1+\lambda_2)^n} = \frac{\lambda_1^k \lambda_2^{n-k} }{(\lambda_1+\lambda_2)^n}\frac{n!}{k!(n-k)!} $

Solution 3

We will view this problem through the lens of Bayes' Theorem. As such, we can write the conditional distribution as

$ P(X = x | X+Y = n) = \frac{P(X = x, X+Y = n)}{P(X+Y = n)} = \frac{P(X = x, Y = n - X)}{\sum^n_{k = 0}P(X = k, Y = n - k)} $.

Since $ X $ and $ Y $ are independent, we can further write

$ P(X = x | X+Y = n) = \frac{P(X = x)P(Y = n - X)}{\sum^n_{k = 0}(P(X=k)P(Y = n-k))} $.

Now let us separate the above expression into numerator and denominator. Recalling that $ X $ and $ Y $ are independent Poisson r.v.s, the numerator is given by

$ P(X = x)P(Y = n - X) = \frac{e^{-\lambda_1}\lambda_1^x}{x!}\cdot\frac{e^{-\lambda_2}\lambda_2^{n-x}}{(n-x)!} $.

Multiplying the above by $ \frac{n!}{n!} $ gives

$ P(X = x)P(Y = n - X) = \frac{e^{-\lambda_1 + \lambda_2}}{n!}{n\choose x}\lambda_1^x\lambda_2^{n-x} $.

Now let us examine the denominator. Again, we make use of the fact that $ X $ and $ Y $ are independent Poisson r.v.s to write

$ \sum^n_{k = 0}(P(X=k)P(Y = n-k)) = \sum^n_{k = 0}\left(\frac{e^{-\lambda_1}\lambda_1^k}{k!}\frac{e^{-\lambda_2}\lambda_2^{n-k}}{(n-k)!}\right) $.

Again, we multiply by $ \frac{n!}{n!} $ to obtain

$ \sum^n_{k = 0}(P(X=k)P(Y = n-k)) = \frac{e^{-\lambda_1 + \lambda_2}}{n!}\sum^n_{k = 0}{n\choose k}\lambda_1^k\lambda_2^{n-k} $.

We can make use of the binomial formula to simplify this expression. Recall that the binomial formula is given by

$ (a+b)^n = \sum^n_{k = 0}{n\choose k}a^k b^{n - k} $.

We use this to write

$ . \sum^n_{k = 0}(P(X=k)P(Y = n-k)) = \frac{e^{-\lambda_1 + \lambda_2}}{n!}\cdot(\lambda_1 + \lambda_2)^n $

Putting this all together, we can finally write

$ P(X = x | X+Y = n) = \frac{\frac{e^{-\lambda_1 + \lambda_2}}{n!}{n\choose x}\lambda_1^x\lambda_2^{n-x}}{\frac{e^{-\lambda_1 + \lambda_2}}{n!}\cdot(\lambda_1 + \lambda_2)^n} = {n\choose x}\frac{\lambda_1^x\lambda_2^{n-x}}{(\lambda_1 + \lambda_2)^n} $

and we are done.

Similar Problem

If $ X $ and $ Y $ are independent binomial random variables with success probabilities $ p $ and $ q $ respectively, find the probability mass function of $ X $ when $ X + Y = k $. In addition, investigate what happens to this p.m.f. when $ p = q $.


Back to QE CS question 1, August 2015

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett