(26 intermediate revisions by the same user not shown)
Line 1: Line 1:
<br>
+
[[Category:ECE]]
 +
[[Category:QE]]
 +
[[Category:CNSIP]]
 +
[[Category:problem solving]]
 +
[[Category:image processing]]
 +
 
 
<center>
 
<center>
<font size="4">[[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] </font>  
+
<font size= 4>
 +
[[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]
 +
</font size>
  
<font size="4">Communication, Networking, Signal and Image Processing (CS)</font>
+
<font size= 4>
 +
Communication, Networking, Signal and Image Processing (CS)
  
<font size="4">Question 5: Image Processing </font>  
+
Question 5: Image Processing
 +
</font size>
  
August 2015  
+
August 2015
</center>  
+
</center>
 
----
 
----
 
 
----
 
----
 +
=== Part 1 ===
  
== Question  ==
+
Consider the emissive display device which is accurately modeled by the equation
  
Question is posted from this [https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_13/CS-5.pdf <u>link</u>].<br>  
+
<math>
 +
\left[ {\begin{array}{*{20}{c}}
 +
X\\
 +
Y\\
 +
Z
 +
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
 +
a&b&c\\
 +
d&e&f\\
 +
g&h&i
 +
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
 +
R\\
 +
G\\
 +
B
 +
\end{array}} \right]
 +
</math>
  
'''Problem 1. ''' (50 pts) <br>
+
where R, G and B are the red, green, and blue inputs in the range 0 to 255 that are used to modulate physically realizable color primaries.
  
Consider the emissive display device which is accurately modeled by the equation
+
a) What is the gamma of the device?
  
<math>\left[ \begin{array}{c} X \\ Y\\Z \end{array} \right] = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \times \left[ \begin{array}{c} R^{\alpha} \\ G^{\alpha} \\ B^{\alpha} \end{array} \right]</math>  
+
b) What are the chromaticity components <math>(x_r,y_r), (x_g,y_g)</math> and <math>(x_b,y_b)</math> of the device's three primaries.
  
Then define
+
c) What are the chromaticity components <math>(x_w,y_w)</math> of the device's white point.
  
<math>p_{0}(n) = \sum_{m=-\infty}^{\infty}x(m,n)</math><br>
+
d) Sketch a chromaticity diagram and plot and label the following on it:
  
<math>p_{1}(m) = \sum_{n=-\infty}^{\infty}x(m,n)</math>
+
<math>
 
+
  \\
with corresponding DTFT given by&nbsp;
+
1. (x,y)=(1,0)\\
 
+
2. (x, y) = (0,1)\\
<math>P_{0}(e^{j\omega}) = \sum_{n=-\infty}^{\infty} p_{0}(n)e^{-jn\omega}</math><br>
+
3. (x, y) = (0,0)\\
 
+
4. (R,G,B) = (255, 0 , 0)\\
<math>P_{1}(e^{j\omega}) = \sum_{m=-\infty}^{\infty} p_{0}(m)e^{-jm\omega}</math><br> a) Derive an expression for&nbsp;<span class="texhtml">''P''<sub>0</sub>(''e''<sup>''j''ω</sup>)</span>&nbsp;in terms of&nbsp;<span class="texhtml">''X''(''e''<sup>''j''μ</sup>,''w''<sup>''j''ν</sup>)</span>.  
+
5. (R, G, B) = (0, 255,0)\\
 
+
6. (R,G,B) = (0, 0, 255)</math>
b) Derive an expression&nbsp;<span class="texhtml">''P''<sub>0</sub>(''e''<sup>''j''ω</sup>)</span>&nbsp;in terms of&nbsp;<span class="texhtml">''X''(''e''<sup>''j''μ</sup>,''e''<sup>''j''ν</sup>)</span>.
+
 
+
c) Derive an expression &nbsp;for&nbsp;<math>\sum_{n = -\infty}^{\infty}p_0(n)</math>&nbsp;interms of&nbsp;<span class="texhtml">''X''(''e''<sup>''j''μ</sup>,''e''<sup>''j''ν</sup>)</span>.  
+
 
+
d) Do the function&nbsp;<span class="texhtml">''p''<sub>0</sub>(''n'')</span>&nbsp;and&nbsp;<span class="texhtml">''p''<sub>1</sub>(''m'')</span>&nbsp;together contains sufficient information to reconstruction the function&nbsp;<span class="texhtml">''x''(''m'',''n'')</span>? If so, provide a reconstruction algorithm; if not, provide a counter example.
+
  
Click [[QE637 2013 Pro1|here]] to view student [[QE637 2013 Pro1|answers and discussions]] <br>
+
e) Imagine that the values of <math>(R,G,B)</math> are quantized to 8 bits, and that you view a smooth gradient from black to white on this device. What artifact are you likely to see, and where in the gradient will you see it?
  
 +
:'''Click [[CS5_2015_Aug_prob1|here]] to view student [[CS5_2015_Aug_prob1|answers and discussions]]'''
 
----
 
----
 +
===Part 2===
  
<br> '''Problem 2. ''' (50 pts)  
+
Consider an X-ray imaging system shown in the figure below. <br />
 +
[[ Image:Pro2_2015_Aug.PNG ]]<br />
 +
Photons are emitted from an X-ray source and columnated by a pin hole in a lead shield. The columnated X-rays then pass in a straight line through an object of length T with density u(x) where x is the depth into the object. The number of photons in the beam at depth <math>x</math> is denoted  by the random variable <math> Y_x</math> with Poisson density given by
  
Let <span class="texhtml">''r''<sub>0</sub>(λ)</span>, <span class="texhtml">''g''<sub>0</sub>(λ)</span>, and <span class="texhtml">''b''<sub>0</sub>(λ)</span> be the CIE color matching functions for red, green, and blue primaries at 700 nm, 546.1 nm, and 435.8 nm, respectively, and let <span class="texhtml">[''r'',''g'',''b'']</span>&nbsp;be the corresponding CIE tristimulus values.&nbsp;&lt;/span&gt;
+
<math>
 +
P\{Y_x = k\} = \frac{e^{-\lambda_x}{\lambda}^{k}_{x}}{k!} .
 +
</math>
  
Furthermore, let&nbsp;<span class="texhtml">''f''<sub>1</sub>(λ)</span>,&nbsp;<span class="texhtml">''f''<sub>2</sub>(λ)</span>, and&nbsp;<span class="texhtml">''f''<sub>3</sub>(λ)</span>&nbsp;be the spectral response functions for the three color outputs of a color camera. So for each pixel of the camera sensor, there is a 3-dimensional output vector given by&nbsp;<span class="texhtml">''F'' = [''F''<sub>1</sub>,''F''<sub>2</sub>,''F''<sub>3</sub>]<sup>''t''</sup></span>, where
+
Where x is measured in the units of <math>cm</math> and <math>\mu(x)</math> is measured in units of <math>cm^{-1}</math>.
  
<math>F_1 = \int_{-\infty}^{\infty}f_1(\lambda)I(\lambda)d\lambda</math>,  
+
a) Calculate the mean of <math> Y_x</math>, i.e. <math>E[Y_x]</math>.
  
<math>F_2 = \int_{-\infty}^{\infty}f_2(\lambda)I(\lambda)d\lambda</math>,
+
b) Calculate the variance of <math> Y_x</math>, i.e. <math>E[(Y_x-E[Y_x])^2]</math>.
  
<math>F_3 = \int_{-\infty}^{\infty}f_3(\lambda)I(\lambda)d\lambda</math>  
+
c) Write a differential equation which describes the behavior of <math>\lambda_x</math> as a function of <math> x</math>.
  
where&nbsp;<span class="texhtml">''I''(λ)</span>&nbsp;is the energy spectrum of the incoming light and&nbsp;<math>f_k(\lambda)\geq 0</math>&nbsp;for&nbsp;<span class="texhtml">''k'' = 0,1,2.</span>.  
+
d) Solve the differential equation to form an expression for <math>\lambda_x</math> in terms of <math>\mu(x)</math> and <math>\lambda_0</math>.
  
Furthermore, assume there exists a matrix,&nbsp;<span class="texhtml">''M''</span>, so that
+
e) Calculate an expression for the integral of the density, <math> \int_{0}^{T} \mu dx </math>, in terms of <math>\lambda_0</math> and <math>\lambda_T</math>
  
<math>
+
:'''Click [[CS5_2015_Aug_prob2|here]] to view student [[CS5_2015_Aug_prob2|answers and discussions]]'''
\left[ {\begin{array}{*{20}{c}}
+
f_1(\lambda)\\
+
f_1(\lambda)\\
+
f_1(\lambda)
+
\end{array}} \right] = {\begin{array}{*{20}{c}}
+
M
+
\end{array}} \left[ {\begin{array}{*{20}{c}}
+
r_0(\lambda)\\
+
g_0(\lambda)\\
+
b_0(\lambda)
+
\end{array}} \right]
+
</math>
+
  
<br> a) Why is it necessary that&nbsp;<math>f_k(\lambda) \geq 0</math>&nbsp;for&nbsp;<span class="texhtml">''k'' = 0,1,2</span>?
+
----
 
+
[[ECE_PhD_Qualifying_Exams|Back to ECE QE page]]:
b) Are the functions, <math> r_0(\lambda) \geq 0</math>, <math>g_0(\lambda) \geq 0</math>, and <math>b_0(\lambda) \geq 0</math>? If so, why? If not, why not?
+
 
+
c) Derive an formula for the tristimulus vector <span class="texhtml">[''r'',''g'',''b'']<sup>''t''</sup></span> in terms of the tristimulus vector <span class="texhtml">''F'' = [''F''<sub>1</sub>,''F''<sub>2</sub>,''F''<sub>3</sub>]<sup>''t''</sup></span>.
+
 
+
d) Do functions <span class="texhtml">''f''<sub>''k''</sub>(λ)</span> exist, which meet these requirements? If so, give a specific example of such functions.
+
 
+
Click [[QE637 2013 Pro2|here]] to view student [[QE637 2013 Pro2|answers and discussions]]
+
 
+
<br>
+
 
+
[[Category:ECE]] [[Category:QE]] [[Category:CNSIP]] [[Category:Problem_solving]] [[Category:Image_processing]]
+

Latest revision as of 11:53, 7 December 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 5: Image Processing

August 2015



Part 1

Consider the emissive display device which is accurately modeled by the equation

$ \left[ {\begin{array}{*{20}{c}} X\\ Y\\ Z \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} a&b&c\\ d&e&f\\ g&h&i \end{array}} \right]\left[ {\begin{array}{*{20}{c}} R\\ G\\ B \end{array}} \right] $

where R, G and B are the red, green, and blue inputs in the range 0 to 255 that are used to modulate physically realizable color primaries.

a) What is the gamma of the device?

b) What are the chromaticity components $ (x_r,y_r), (x_g,y_g) $ and $ (x_b,y_b) $ of the device's three primaries.

c) What are the chromaticity components $ (x_w,y_w) $ of the device's white point.

d) Sketch a chromaticity diagram and plot and label the following on it:

$ \\ 1. (x,y)=(1,0)\\ 2. (x, y) = (0,1)\\ 3. (x, y) = (0,0)\\ 4. (R,G,B) = (255, 0 , 0)\\ 5. (R, G, B) = (0, 255,0)\\ 6. (R,G,B) = (0, 0, 255) $

e) Imagine that the values of $ (R,G,B) $ are quantized to 8 bits, and that you view a smooth gradient from black to white on this device. What artifact are you likely to see, and where in the gradient will you see it?

Click here to view student answers and discussions

Part 2

Consider an X-ray imaging system shown in the figure below.
Pro2 2015 Aug.PNG
Photons are emitted from an X-ray source and columnated by a pin hole in a lead shield. The columnated X-rays then pass in a straight line through an object of length T with density u(x) where x is the depth into the object. The number of photons in the beam at depth $ x $ is denoted by the random variable $ Y_x $ with Poisson density given by

$ P\{Y_x = k\} = \frac{e^{-\lambda_x}{\lambda}^{k}_{x}}{k!} . $

Where x is measured in the units of $ cm $ and $ \mu(x) $ is measured in units of $ cm^{-1} $.

a) Calculate the mean of $ Y_x $, i.e. $ E[Y_x] $.

b) Calculate the variance of $ Y_x $, i.e. $ E[(Y_x-E[Y_x])^2] $.

c) Write a differential equation which describes the behavior of $ \lambda_x $ as a function of $ x $.

d) Solve the differential equation to form an expression for $ \lambda_x $ in terms of $ \mu(x) $ and $ \lambda_0 $.

e) Calculate an expression for the integral of the density, $ \int_{0}^{T} \mu dx $, in terms of $ \lambda_0 $ and $ \lambda_T $

Click here to view student answers and discussions

Back to ECE QE page:

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett