Line 81: Line 81:
  
 
Using <math>(a+b)^k=\sum_{i=0}^{k}a^ib^{(k-i)}\cdot \frac{k!}{i!(k-i)!} </math>
 
Using <math>(a+b)^k=\sum_{i=0}^{k}a^ib^{(k-i)}\cdot \frac{k!}{i!(k-i)!} </math>
 +
 
Therefore,  
 
Therefore,  
  
 
<math>
 
<math>
P_{X|Z}(k|Z=n)=\frac{P(x=k,z=n)}{P(z=n)}=\frac{P(x=k,x+y=n)}{P(z=n)}=\frac{P(x=k,y=n-k)}{P(z=n)}=
+
P_{X|Z}(k|Z=n)=\frac{P(x=k,z=n)}{P(z=n)}=\frac{P(x=k,x+y=n)}{P(z=n)}=\frac{P(x=k,y=n-k)}{P(z=n)}\\
 +
=\frac{\lambda_1^k e^{-\lambda_1}}{k!}\frac{\lambda_1^{n-k} e^{-\lambda_2}}{(n-k)!}\frac{n!}{e^{-\lambda_1}e^{-\lambda_2}(\lambda_1+\lambda_2)^n}
 
</math>
 
</math>
  

Revision as of 11:00, 7 December 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2015


Solution 1

First of all, the conditional distribution can be written as:

$ P(X=x|X+Y=n) =\frac{P(X=x, X+Y=n)}{P(X+Y=n)} =\frac{P(X=x, Y=n-x)}{P(X+Y=n)} $

And

$ P(X=x, Y=n-x) =P(X=x)P(Y=n-x)\\ =\frac{e^{-\lambda_1}\lambda^x}{x!}\times \frac{e^{-\lambda_2}\lambda^(n-x)}{(n-x)!}\\ =\frac{e^{-(\lambda_1+\lambda_2)}}{x!} \left( \begin{array}{c} n\\x \end{array} \right) \lambda_1^x\lambda_2^{n-x} $

Also

$ P(X+Y=n) ={\sum_{k=0}^{k=n}P(X=k,Y=n-k)} ={\sum_{k=0}^{k=n}P(X=k)P(Y=n-k)}\\ =\frac{e^{-(\lambda_1+\lambda_2)}}{n!}\sum_{k=0}^{k=n} \left( \begin{array}{c} n\\k \end{array} \right) \lambda_1^k\lambda_2^{n-k}\\ =\frac{e^{-(\lambda_1+\lambda_2)}}{n!}(\lambda_1+\lambda_2)^n $

So, we get $ P(X=x|X+Y=n) = \left( \begin{array}{c} n\\k \end{array} \right) (\frac{\lambda_1}{\lambda_1+\lambda_2})^x(\frac{\lambda_2}{\lambda_1+\lambda_2})^{n-x} $

Solution 2

Let $ Z=X+Y $,

$ P_Z(k)=P_Z(z=k)=P_Z(x+yk)\\ =\sum_{i=0}^{k}P(x=i)(y=k-i)=\sum_{i=0}^{k}\frac{\lambda_1^i e^{\lambda_1}}{i!}\cdot\frac{\lambda_2^{k-i}e^{-\lambda_2}}{(k-i)!} =e^{-\lambda_1-\lambda_2}\cdot \frac{(\lambda_1+\lambda_2)^k}{k!} $

Using $ (a+b)^k=\sum_{i=0}^{k}a^ib^{(k-i)}\cdot \frac{k!}{i!(k-i)!} $

Therefore,

$ P_{X|Z}(k|Z=n)=\frac{P(x=k,z=n)}{P(z=n)}=\frac{P(x=k,x+y=n)}{P(z=n)}=\frac{P(x=k,y=n-k)}{P(z=n)}\\ =\frac{\lambda_1^k e^{-\lambda_1}}{k!}\frac{\lambda_1^{n-k} e^{-\lambda_2}}{(n-k)!}\frac{n!}{e^{-\lambda_1}e^{-\lambda_2}(\lambda_1+\lambda_2)^n} $


Back to QE CS question 1, August 2015

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett