Line 21: Line 21:
 
</center>
 
</center>
 
----
 
----
Let <math>\lambda = \frac{1}{\mu}</math>, then <math>E(X)=E(Y)=\frac{1}{\lambda}</math>.
+
Let <math>\lambda = \frac{1}{\mu}</math>, then <math>E(X)=E(Y)=\frac{1}{\lambda}</math>.  
 +
 
 +
<math>
 +
\phi_{X+Y}=E[e^{it(X+Y)}]=\int_{X}\int_{Y}e^{it(X+Y)}p(x,y)dxdy
 +
</math>
 +
 
 +
As X and Y are independent
 +
 
 +
<math>
 +
\phi_{X+Y}=\int_{X}\int_{Y}e^{it(X+Y)}p(x)p(y)dxdy
 +
</math>
  
 
----
 
----

Revision as of 14:55, 3 December 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2015


Let $ \lambda = \frac{1}{\mu} $, then $ E(X)=E(Y)=\frac{1}{\lambda} $.

$ \phi_{X+Y}=E[e^{it(X+Y)}]=\int_{X}\int_{Y}e^{it(X+Y)}p(x,y)dxdy $

As X and Y are independent

$ \phi_{X+Y}=\int_{X}\int_{Y}e^{it(X+Y)}p(x)p(y)dxdy $


Back to QE CS question 1, August 2015

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett