Line 26: Line 26:
 
=\frac{P(X=x, Y=n-x)}{P(X+Y=n)}\\
 
=\frac{P(X=x, Y=n-x)}{P(X+Y=n)}\\
 
</math>
 
</math>
 +
 
<math>
 
<math>
 
P(X=x, Y=n-x)
 
P(X=x, Y=n-x)

Revision as of 12:12, 3 December 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2015


$ P(X=x|X+Y=n) =\frac{P(X=x, X+Y=n)}{P(X+Y=n)}\\ =\frac{P(X=x, Y=n-x)}{P(X+Y=n)}\\ $

$ P(X=x, Y=n-x) =P(X=x)P(Y=n-x)\\ =\frac{e^{-\lambda_1}\lambda^x}{x!}\times \frac{e^{-\lambda_2}\lambda^(n-x)}{(n-x)!}\\ =\frac{e^{-(\lambda_1+\lambda_2)}}{x!} \left( \begin{array}{c} n\\x \end{array} \right) \lambda_1^x\lambda_2^{n-x}\\ $ $ {P(X+Y=n)} ={\sum_{k=0}^{k=n}P(X=k,Y=n-k)}\\ ={\sum_{k=0}^{k=n}P(X=k)P(Y=n-k)}\\ =\frac{e^{-(\lambda_1+\lambda_2)}}{n!}\sum_{k=0}^{k=n} \left( \begin{array}{c} n\\k \end{array} \right) \lambda_1^k\lambda_2^{n-k} &=\frac{e^{-(\lambda_1+\lambda_2)}}{n!}(\lambda_1+\lambda_2)^n $ So $ P(X=x|X+Y=n) = \left( \begin{array}{c} n\\k \end{array} \right) (\frac{\lambda_1}{\lambda_1+\lambda_2})^x(\frac{\lambda_2}{\lambda_1+\lambda_2})^{n-x} \end{align*} $


Back to QE CS question 1, August 2015

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn