(4 intermediate revisions by the same user not shown)
Line 92: Line 92:
 
{|
 
{|
 
|-
 
|-
| In this situation, aliasing DO occurs. In the interval of <span class="texhtml">[ − π,π]</span>, which represents one period, the frequcy spectrum is different from Fig b-1.
+
| In this situation, aliasing DO occurs. In the interval of <span class="texhtml">[ − π,π]</span>, which represents one period, the frequency spectrum is different from Fig b-1.
 
|}
 
|}
  
 
[[Image:Xf2 multiperiod.jpg]]
 
[[Image:Xf2 multiperiod.jpg]]
 +
 +
2) Write MATLAB code to play the two DT signals from part a) for 2 seconds. Briefly comment on how each signal "sounds like".
 +
 +
f0 = 392;  <br />
 +
 +
n1 = 1:20000;  <br />
 +
T1 = 1/1000;    % above Nyquist freq  <br />
 +
x1 = cos(2*pi*f0*n1*T1);  <br />
 +
 +
n2 = 1:20000;  <br />
 +
T2 = 1/500;    % below Nyquist freq  <br />
 +
x2 = cos(2*pi*f0*n2*T2);  <br />
 +
 +
sound(x1)  <br />
 +
pause(3)  % pause for 3 seconds  <br />
 +
sound(x2)  <br />
 +
 +
 +
x1 makes higher notes/sounds than x2.
 
----
 
----
  
Line 104: Line 123:
 
----
 
----
  
[[HW2ECE438F15|Back to Homework2]]
+
[[HW2ECE38F15|Back to Homework2]]
  
[[2014_Fall_ECE_438_Boutin|Back to ECE438, Fall 2014, Prof. Boutin]]
+
[[2015_Fall_ECE_438_Boutin|Back to ECE438, Fall 2014, Prof. Boutin]]

Latest revision as of 14:54, 25 September 2015


Homework 2 Solution, ECE438, Fall 2015, Prof. Boutin

1) Pick a note frequency f0 = 392Hz

x(t) = 'cos'(2πf0t) = 'cos'(2π ⋅ 392t)
$ a.\ Assign\ sampling\ period\ T_1=\frac{1}{1000} $
$ 2f_0<\frac{1}{T_1}, \ No\ aliasing\ occurs. $

$ \begin{align} x_1(n) &=x(nT_1)=cos(2\pi \cdot 392nT_1)=cos(2\pi \cdot\frac{392}{1000}n) \\ &=\frac{1}{2}\left( e^{-j2\pi \cdot \frac{392}{1000}n} + e^{j2\pi \cdot\frac{392}{1000}n} \right) \\ \end{align} $

$ 0<2\pi \cdot\frac{392}{1000}<\pi $
$ -\pi<-2\pi \cdot\frac{392}{1000}<0 $

$ \begin{align} \mathcal{X}_1(\omega) &=2\pi \cdot\frac{1}{2} \left[\delta (\omega -2\pi \cdot\frac{392}{1000}) + \delta (\omega + 2\pi \cdot\frac{392}{1000})\right] \\ &=\pi \left[\delta (\omega -2\pi \cdot\frac{392}{1000}) + \delta (\omega + 2\pi \cdot\frac{392}{1000})\right] \\ \end{align} $

Xw1 singleperiod.jpg

$ for\ all\ \omega $
$ \mathcal{X}_1(\omega)=\pi\cdot rep_{2\pi} \left[\delta (\omega -2\pi \cdot\frac{392}{1000}) + \delta (\omega + 2\pi \cdot\frac{392}{1000})\right] $

Xw1 multiperiod.jpg

In this situation, no aliasing occurs. In the interval of [ − π,π], which represents one period, the frequcy spectrum remains the same as Fig a-1.
$ b.\ Assign\ sampling\ period\ T_2=\frac{1}{500} $
$ 2f_0>\frac{1}{T_2}, \ Aliasing\ occurs. $

$ \begin{align} x_2(n) &=x(nT_2)=cos(2\pi \cdot 392nT_2)=cos(2\pi \cdot\frac{392}{500}n) \\ &=\frac{1}{2}\left( e^{-j2\pi \cdot\frac{392}{500}n} + e^{j2\pi \cdot\frac{392}{500}n} \right) \\ \end{align} $

$ \pi<2\pi \cdot\frac{392}{500}<2\pi $
$ -2\pi<-2\pi \cdot\frac{392}{500}<\pi $
$ \mathcal{X}_2(\omega)=\pi \left[\delta (\omega -2\pi \cdot\frac{392}{500}) + \delta (\omega + 2\pi \cdot\frac{392}{500})\right] $
$ X_2(f)=\frac{1}{2}\left[\delta (f -\frac{392}{500}) + \delta (f + \frac{392}{500})\right] $

Xw2 singleperiod.jpg

$ for\ all\ \omega $
$ \mathcal{X}_2(\omega)=\pi\cdot rep_{2\pi} \left[\delta (\omega -2\pi \cdot\frac{392}{500}) + \delta (\omega + 2\pi \cdot\frac{392}{500})\right] $
$ X_2(f)=\frac{1}{2}rep_2\left[\delta (f -\frac{392}{500}) + \delta (f + \frac{392}{500})\right] $

Xw2 multiperiod.jpg

In this situation, aliasing DO occurs. In the interval of [ − π,π], which represents one period, the frequency spectrum is different from Fig b-1.

Xf2 multiperiod.jpg

2) Write MATLAB code to play the two DT signals from part a) for 2 seconds. Briefly comment on how each signal "sounds like".

f0 = 392;

n1 = 1:20000;
T1 = 1/1000;  % above Nyquist freq
x1 = cos(2*pi*f0*n1*T1);

n2 = 1:20000;
T2 = 1/500;  % below Nyquist freq
x2 = cos(2*pi*f0*n2*T2);

sound(x1)
pause(3)  % pause for 3 seconds
sound(x2)


x1 makes higher notes/sounds than x2.


Discussion

You may discuss the homework below.

  • write comment/question here
    • answer will go here

Back to Homework2

Back to ECE438, Fall 2014, Prof. Boutin

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett