Line 11: Line 11:
 
*[[practice_DTFT_computation_sine_ECE438F13|Compute the DT Fourier transform of a sinc]]
 
*[[practice_DTFT_computation_sine_ECE438F13|Compute the DT Fourier transform of a sinc]]
 
*[[practice_DTFT_computation_rect_ECE438F13|Compute the DT Fourier transform of a rect]]
 
*[[practice_DTFT_computation_rect_ECE438F13|Compute the DT Fourier transform of a rect]]
 +
*[[Fourier_transform_3numinusn_DT_ECE301S11|Compute the Fourier transform of 3^n u[-n]]]
 +
*[[Fourier_transform_window_DT_ECE301S11|Compute the Fourier transform of u[n+1]-u[n-2]]]
 
----
 
----
 
==Slectures on DTFT==
 
==Slectures on DTFT==

Latest revision as of 13:47, 1 May 2015


About the Discrete-time Fourier transform (DTFT)

$ \,\mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\, $


Practice Problems


Slectures on DTFT


Other pages related to the DTFT


Click here to view all pages in the "discrete-time Fourier transform" cateory


Back to table of discrete-time Fourier transform pairs and properties

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett