Line 22: Line 22:
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions!
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions!
 
----
 
----
==Answer 1===
+
==Answer 1==
 
<math>
 
<math>
 
P_{\infty}=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T | x(t) |^2 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T 4 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} 4t \Big| ^T _{-T} = \lim_{T\rightarrow \infty} {1 \over {2T}} 8T = 4
 
P_{\infty}=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T | x(t) |^2 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T 4 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} 4t \Big| ^T _{-T} = \lim_{T\rightarrow \infty} {1 \over {2T}} 8T = 4
Line 34: Line 34:
 
*<span style="color:blue">You made a limit manipulation error. </span>
 
*<span style="color:blue">You made a limit manipulation error. </span>
 
----
 
----
==Answer 3===
+
==Answer 3==
 
<math>
 
<math>
 
P_{\infty}=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T (2j)^2 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T -4 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} -4t \Big| ^T _{-T} = \lim_{T\rightarrow \infty} {1 \over {2T}} -8T = -4
 
P_{\infty}=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T (2j)^2 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T -4 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} -4t \Big| ^T _{-T} = \lim_{T\rightarrow \infty} {1 \over {2T}} -8T = -4
Line 40: Line 40:
 
*<span style="color:blue">Power cannot be negative, so your answer cannot be correct. </span>
 
*<span style="color:blue">Power cannot be negative, so your answer cannot be correct. </span>
 
----
 
----
==Answer 4===
+
==Answer 4==
 
<math>|x|^2=4 \quad 4 \frac{\infty}{\infty}=4</math>  
 
<math>|x|^2=4 \quad 4 \frac{\infty}{\infty}=4</math>  
 
*<span style="color:blue">Sorry but I don't understand your explanation. </span>
 
*<span style="color:blue">Sorry but I don't understand your explanation. </span>
 
----
 
----
 
[[Signal_power_CT|Back to Signal Power]]
 
[[Signal_power_CT|Back to Signal Power]]

Latest revision as of 14:29, 21 April 2015


Practice Question on "Signals and Systems"

More Practice Problems

Topic: Signal Power


Question

Compute the power of the signal $ x(t)= 2j $


Share your answers below (optional)

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions!


Answer 1

$ P_{\infty}=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T | x(t) |^2 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T 4 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} 4t \Big| ^T _{-T} = \lim_{T\rightarrow \infty} {1 \over {2T}} 8T = 4 $

  • looks good!

Answer 2

$ P_{\infty}=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-\infty}^\infty| x(t) |^2 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-\infty}^\infty 4 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} \infty= \frac{\infty}{\infty}=1 $

  • You made a limit manipulation error.

Answer 3

$ P_{\infty}=\lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T (2j)^2 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T -4 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} -4t \Big| ^T _{-T} = \lim_{T\rightarrow \infty} {1 \over {2T}} -8T = -4 $

  • Power cannot be negative, so your answer cannot be correct.

Answer 4

$ |x|^2=4 \quad 4 \frac{\infty}{\infty}=4 $

  • Sorry but I don't understand your explanation.

Back to Signal Power

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood