Line 75: Line 75:
  
 
* The definition of the characteristic function is inaccurate. The characteristic function of random variable <math>Z</math> should be <math>E[e^{itZ}]</math>, instead of <math>E[e^Z]</math>. However, the final formula of the characteristic function of <math>Z</math>, a function of <math>t</math>, is correct.
 
* The definition of the characteristic function is inaccurate. The characteristic function of random variable <math>Z</math> should be <math>E[e^{itZ}]</math>, instead of <math>E[e^Z]</math>. However, the final formula of the characteristic function of <math>Z</math>, a function of <math>t</math>, is correct.
 
 
* It would be nicer to mention that the characteristic function of a Gaussian random variable <math>X</math> is <math>e^{i\mu_Xt-\frac{1}{2}\sigma_X^2t^2}</math>, where <math>\mu_X</math> and <math>\sigma_X^2</math> are mean and variance of random variable <math>X</math>. That would make the uniqueness statement clearer.
 
* It would be nicer to mention that the characteristic function of a Gaussian random variable <math>X</math> is <math>e^{i\mu_Xt-\frac{1}{2}\sigma_X^2t^2}</math>, where <math>\mu_X</math> and <math>\sigma_X^2</math> are mean and variance of random variable <math>X</math>. That would make the uniqueness statement clearer.
  

Latest revision as of 00:54, 31 March 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2011



Part 3

Jump to Part 1,2,4


Show that the sum of two jointly distributed Gaussian random variables that are not necessarily statistically independent is a Gaussian random variable.


Solution 1:

Suppose $ \mathbf{X} $ and $ \mathbf{Y} $ are jointly distributed Gaussian random variables with jointly pdf

$ f_{X,Y}(x,y)=\frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-r^2}}\text{exp}\left\{\frac{-1}{2(1-r^2)}\left(\frac{(x-\eta_X)^2}{\sigma_X^2}-2r\frac{(x-\eta_X)(y-\eta_Y)}{\sigma_X\sigma_Y}+\frac{(y-\eta_Y)^2}{\sigma_Y^2}\right)\right\} $

Then, compute the characteristic function of $ \mathbf{X}+\mathbf{Y} $:

$ \begin{align} \Phi_{X+Y}(\omega) &= E[e^{i\omega(X+Y)}]\\ &=\int_{-\infty}^\infty\int_{-\infty}^\infty e^{i\omega(x+y)}f_{X,Y}(x,y)dxdy \\ &=\int_{-\infty}^\infty e^{i\omega y}\left(\int_{-\infty}^\infty e^{i\omega x}f_{X,Y}(x,y)dx\right)dy \\ &=\int_{-\infty}^\infty e^{i\omega y}\left(\int_{-\infty}^\infty e^{i\omega x} \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-r^2}}\text{exp}\left\{ \frac{-1}{2(1-r^2)}\left(\frac{(x-\eta_X)^2}{\sigma_X^2}-2r\frac{(x-\eta_X)(y-\eta_Y)}{\sigma_X\sigma_Y}+\frac{(y-\eta_Y)^2}{\sigma_Y^2}\right)\right\}dx\right)dy \\ &=\int_{-\infty}^\infty \frac{e^{i\omega y}}{\sqrt{2\pi}\sigma_Y}\left(\int_{-\infty}^\infty e^{i\omega x} \frac{1}{\sqrt{2\pi}\sigma_X\sqrt{1-r^2}}\text{exp}\left\{-\frac{(x-(\eta_X+\frac{\sigma_X}{\sigma_Y}r(y-\eta_Y)))^2}{2(1-r^2)\sigma_X^2}\right\}dx\right)\text{exp}\left\{-\frac{(y-\eta_Y)^2}{2\sigma_Y^2}\right\}dy \end{align} $

We know that the characteristic function of a Gaussian random variable with mean $ \mu $ and variance $ \sigma^2 $ is $ (e^{i\omega\mu-\frac{1}{2}\sigma^2\omega^2}) $. Then,

$ \begin{align} \Phi_{X+Y}(\omega) &= \int_{-\infty}^\infty \dfrac{e^{i\omega y}}{\sqrt{2\pi}\sigma_Y}\left(e^{i\omega(\eta_X+\frac{\sigma_X}{\sigma_Y}r(y-\eta_Y))-\frac{1}{2}(1-r^2)\sigma_X^2\omega^2}\right)\text{exp}\left\{-\dfrac{(y-\eta_Y)^2}{2\sigma_Y^2}\right\}dy \\ &= e^{i\omega(\eta_X-\frac{\sigma_X}{\sigma_Y}r\eta_Y)-\frac{1}{2}(1-r^2)\sigma_X^2\omega^2}\int_{-\infty}^\infty e^{i\omega(1+\frac{\sigma_X}{\sigma_Y}r)y}\cdot\dfrac{1}{\sqrt{2\pi}\sigma_Y}\text{exp}\left\{-\dfrac{(y-\eta_Y)^2}{2\sigma_Y^2}\right\}dy \\ &= e^{i\omega(\eta_X-\frac{\sigma_X}{\sigma_Y}r\eta_Y)-\frac{1}{2}(1-r^2)\sigma_X^2\omega^2}\cdot e^{i\omega(1+\frac{\sigma_X}{\sigma_Y}r)\eta_Y-\frac{1}{2}\sigma_Y^2\omega^2(1+\frac{\sigma_X}{\sigma_Y}r)^2} \\ &= e^{i\omega(\eta_X+\eta_Y)-\frac{1}{2}\omega^2(\sigma_X^2+2\sigma_X\sigma_Yr+\sigma_Y^2)} \end{align} $

So, $ \mathbf{X}+\mathbf{Y} $ is a Gaussian random variable with mean $ (\eta_X+\eta_Y) $ and variance $ (\sigma_X^2+2\sigma_X\sigma_Yr+\sigma_Y^2) $


Solution 2:

Let $ Z=X+Y $, where $ X\sim(\mu_1,\sigma_1^2) $ and $ Y\sim(\mu_2,\sigma_2^2) $.

The characteristic function

$ E(e^Z)=E(e^{X+Y})=e^{i(\mu_1+\mu_2)t-\frac{1}{2}\left(\sigma_1^2+\sigma_2^2+2\text{cov}(x,y)\right)t^2} $

according to the property of jointly distributed Gaussian random variable.

$ \therefore Z\sim\left(\mu_1+\mu_2, sigma_1^2+\sigma_2^2+2\text{cov}(x,y)\right) $ according to uniqueness of characteristic function.

Comments:

  • The definition of the characteristic function is inaccurate. The characteristic function of random variable $ Z $ should be $ E[e^{itZ}] $, instead of $ E[e^Z] $. However, the final formula of the characteristic function of $ Z $, a function of $ t $, is correct.
  • It would be nicer to mention that the characteristic function of a Gaussian random variable $ X $ is $ e^{i\mu_Xt-\frac{1}{2}\sigma_X^2t^2} $, where $ \mu_X $ and $ \sigma_X^2 $ are mean and variance of random variable $ X $. That would make the uniqueness statement clearer.


Related Problems:

$ \mathbf{X} $ and $ \mathbf{Y} $ are two exponential random variables with different means, $ \lambda_X $ and $ \lambda_Y $, respectively. Show that $ \text{Min}(X,Y) $ is also an exponential random variable.


"Communication, Networks, Signal, and Image Processing" (CS)- Question 1, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett