(Created page with "Category:ECE Category:QE Category:CNSIP Category:problem solving Category:random variables Category:probability <center> <font size= 4> ECE_PhD_Qual...") |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 57: | Line 57: | ||
So, <math>\mathbf{X}+\mathbf{Y}</math> is a Gaussian random variable with mean <math>(\eta_X+\eta_Y)</math> and variance <math>(\sigma_X^2+2\sigma_X\sigma_Yr+\sigma_Y^2)</math> | So, <math>\mathbf{X}+\mathbf{Y}</math> is a Gaussian random variable with mean <math>(\eta_X+\eta_Y)</math> and variance <math>(\sigma_X^2+2\sigma_X\sigma_Yr+\sigma_Y^2)</math> | ||
+ | |||
+ | |||
+ | |||
+ | =Solution 2:= | ||
+ | |||
+ | Let <math>Z=X+Y</math>, where <math>X\sim(\mu_1,\sigma_1^2)</math> and <math>Y\sim(\mu_2,\sigma_2^2)</math>. | ||
+ | |||
+ | The characteristic function | ||
+ | |||
+ | <math>E(e^Z)=E(e^{X+Y})=e^{i(\mu_1+\mu_2)t-\frac{1}{2}\left(\sigma_1^2+\sigma_2^2+2\text{cov}(x,y)\right)t^2}</math> | ||
+ | |||
+ | according to the property of jointly distributed Gaussian random variable. | ||
+ | |||
+ | <math>\therefore Z\sim\left(\mu_1+\mu_2, sigma_1^2+\sigma_2^2+2\text{cov}(x,y)\right)</math> according to uniqueness of characteristic function. | ||
+ | |||
+ | <font color="green"><u>'''Comments'''</u>: | ||
+ | |||
+ | * The definition of the characteristic function is inaccurate. The characteristic function of random variable <math>Z</math> should be <math>E[e^{itZ}]</math>, instead of <math>E[e^Z]</math>. However, the final formula of the characteristic function of <math>Z</math>, a function of <math>t</math>, is correct. | ||
+ | * It would be nicer to mention that the characteristic function of a Gaussian random variable <math>X</math> is <math>e^{i\mu_Xt-\frac{1}{2}\sigma_X^2t^2}</math>, where <math>\mu_X</math> and <math>\sigma_X^2</math> are mean and variance of random variable <math>X</math>. That would make the uniqueness statement clearer. | ||
+ | |||
+ | </font> | ||
+ | ---- | ||
+ | |||
+ | =Related Problems:= | ||
+ | <math>\mathbf{X}</math> and <math>\mathbf{Y}</math> are two exponential random variables with different means, <math>\lambda_X</math> and <math>\lambda_Y</math>, respectively. Show that <math>\text{Min}(X,Y)</math> is also an exponential random variable. | ||
+ | |||
---- | ---- | ||
Latest revision as of 00:54, 31 March 2015
Communication, Networking, Signal and Image Processing (CS)
Question 1: Probability and Random Processes
August 2011
Part 3
Show that the sum of two jointly distributed Gaussian random variables that are not necessarily statistically independent is a Gaussian random variable.
Solution 1:
Suppose $ \mathbf{X} $ and $ \mathbf{Y} $ are jointly distributed Gaussian random variables with jointly pdf
$ f_{X,Y}(x,y)=\frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-r^2}}\text{exp}\left\{\frac{-1}{2(1-r^2)}\left(\frac{(x-\eta_X)^2}{\sigma_X^2}-2r\frac{(x-\eta_X)(y-\eta_Y)}{\sigma_X\sigma_Y}+\frac{(y-\eta_Y)^2}{\sigma_Y^2}\right)\right\} $
Then, compute the characteristic function of $ \mathbf{X}+\mathbf{Y} $:
$ \begin{align} \Phi_{X+Y}(\omega) &= E[e^{i\omega(X+Y)}]\\ &=\int_{-\infty}^\infty\int_{-\infty}^\infty e^{i\omega(x+y)}f_{X,Y}(x,y)dxdy \\ &=\int_{-\infty}^\infty e^{i\omega y}\left(\int_{-\infty}^\infty e^{i\omega x}f_{X,Y}(x,y)dx\right)dy \\ &=\int_{-\infty}^\infty e^{i\omega y}\left(\int_{-\infty}^\infty e^{i\omega x} \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-r^2}}\text{exp}\left\{ \frac{-1}{2(1-r^2)}\left(\frac{(x-\eta_X)^2}{\sigma_X^2}-2r\frac{(x-\eta_X)(y-\eta_Y)}{\sigma_X\sigma_Y}+\frac{(y-\eta_Y)^2}{\sigma_Y^2}\right)\right\}dx\right)dy \\ &=\int_{-\infty}^\infty \frac{e^{i\omega y}}{\sqrt{2\pi}\sigma_Y}\left(\int_{-\infty}^\infty e^{i\omega x} \frac{1}{\sqrt{2\pi}\sigma_X\sqrt{1-r^2}}\text{exp}\left\{-\frac{(x-(\eta_X+\frac{\sigma_X}{\sigma_Y}r(y-\eta_Y)))^2}{2(1-r^2)\sigma_X^2}\right\}dx\right)\text{exp}\left\{-\frac{(y-\eta_Y)^2}{2\sigma_Y^2}\right\}dy \end{align} $
We know that the characteristic function of a Gaussian random variable with mean $ \mu $ and variance $ \sigma^2 $ is $ (e^{i\omega\mu-\frac{1}{2}\sigma^2\omega^2}) $. Then,
$ \begin{align} \Phi_{X+Y}(\omega) &= \int_{-\infty}^\infty \dfrac{e^{i\omega y}}{\sqrt{2\pi}\sigma_Y}\left(e^{i\omega(\eta_X+\frac{\sigma_X}{\sigma_Y}r(y-\eta_Y))-\frac{1}{2}(1-r^2)\sigma_X^2\omega^2}\right)\text{exp}\left\{-\dfrac{(y-\eta_Y)^2}{2\sigma_Y^2}\right\}dy \\ &= e^{i\omega(\eta_X-\frac{\sigma_X}{\sigma_Y}r\eta_Y)-\frac{1}{2}(1-r^2)\sigma_X^2\omega^2}\int_{-\infty}^\infty e^{i\omega(1+\frac{\sigma_X}{\sigma_Y}r)y}\cdot\dfrac{1}{\sqrt{2\pi}\sigma_Y}\text{exp}\left\{-\dfrac{(y-\eta_Y)^2}{2\sigma_Y^2}\right\}dy \\ &= e^{i\omega(\eta_X-\frac{\sigma_X}{\sigma_Y}r\eta_Y)-\frac{1}{2}(1-r^2)\sigma_X^2\omega^2}\cdot e^{i\omega(1+\frac{\sigma_X}{\sigma_Y}r)\eta_Y-\frac{1}{2}\sigma_Y^2\omega^2(1+\frac{\sigma_X}{\sigma_Y}r)^2} \\ &= e^{i\omega(\eta_X+\eta_Y)-\frac{1}{2}\omega^2(\sigma_X^2+2\sigma_X\sigma_Yr+\sigma_Y^2)} \end{align} $
So, $ \mathbf{X}+\mathbf{Y} $ is a Gaussian random variable with mean $ (\eta_X+\eta_Y) $ and variance $ (\sigma_X^2+2\sigma_X\sigma_Yr+\sigma_Y^2) $
Solution 2:
Let $ Z=X+Y $, where $ X\sim(\mu_1,\sigma_1^2) $ and $ Y\sim(\mu_2,\sigma_2^2) $.
The characteristic function
$ E(e^Z)=E(e^{X+Y})=e^{i(\mu_1+\mu_2)t-\frac{1}{2}\left(\sigma_1^2+\sigma_2^2+2\text{cov}(x,y)\right)t^2} $
according to the property of jointly distributed Gaussian random variable.
$ \therefore Z\sim\left(\mu_1+\mu_2, sigma_1^2+\sigma_2^2+2\text{cov}(x,y)\right) $ according to uniqueness of characteristic function.
Comments:
- The definition of the characteristic function is inaccurate. The characteristic function of random variable $ Z $ should be $ E[e^{itZ}] $, instead of $ E[e^Z] $. However, the final formula of the characteristic function of $ Z $, a function of $ t $, is correct.
- It would be nicer to mention that the characteristic function of a Gaussian random variable $ X $ is $ e^{i\mu_Xt-\frac{1}{2}\sigma_X^2t^2} $, where $ \mu_X $ and $ \sigma_X^2 $ are mean and variance of random variable $ X $. That would make the uniqueness statement clearer.
Related Problems:
$ \mathbf{X} $ and $ \mathbf{Y} $ are two exponential random variables with different means, $ \lambda_X $ and $ \lambda_Y $, respectively. Show that $ \text{Min}(X,Y) $ is also an exponential random variable.
"Communication, Networks, Signal, and Image Processing" (CS)- Question 1, August 2011
Go to
- Part 1: solutions and discussions
- Part 2: solutions and discussions
- Part 4: solutions and discussions