(16 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | <center><font size= 5> | + | <center><font size="5"></font> |
− | DTFT of a Cosine Sampled Above and Below the Nyquist Rate | + | <font size="5">DTFT of a Cosine Sampled Above and Below the Nyquist Rate </font> |
− | </font | + | |
− | A [ | + | A [http://www.projectrhea.org/learning/slectures.php slecture] by [[ECE]] student Sahil Sanghani |
− | Partly based on the [[ | + | Partly based on the [[2014 Fall ECE 438 Boutin|ECE438 Fall 2014 lecture]] material of [[User:Mboutin|Prof. Mireille Boutin]]. |
− | </center> | + | </center> |
---- | ---- | ||
− | == Outline == | + | == Outline == |
− | * Introduction | + | |
− | * Useful Background | + | *Introduction |
− | * DTFT Example of a Cosine Sampled Above the Nyquist Rate | + | *Useful Background |
− | * DTFT Example of a Cosine Sampled Below the Nyquist Rate | + | *DTFT Example of a Cosine Sampled Above the Nyquist Rate |
− | * Conclusion | + | *DTFT Example of a Cosine Sampled Below the Nyquist Rate |
− | * References | + | *Conclusion |
+ | *References | ||
---- | ---- | ||
+ | |||
---- | ---- | ||
− | == Introduction == | + | == Introduction == |
− | In this Slecture, I will walk you through taking the DTFT of a pure frequency sampled above and below the Nyquist Rate. Then I will compare the differences between them. | + | |
+ | In this Slecture, I will walk you through taking the DTFT of a pure frequency sampled above and below the Nyquist Rate. Then I will compare the differences between them. | ||
+ | |||
---- | ---- | ||
− | |||
− | |||
− | == DTFT of a Cosine Sampled Above the Nyquist Rate == | + | == Useful Background == |
− | + | ||
+ | Nyquist Condition: <math>f_s = 2f_{max}</math> <br /> | ||
+ | DTFT of a Cosine: <font size="2"><math>x_d[n] = cos(2\pi nT){\leftrightarrow}X(\omega) = \pi(\delta(\omega-\omega_o) + \delta(\omega+\omega_o)){ ,for\ } \omega \in [-\pi,\pi]</math></font> | ||
+ | |||
+ | <font size="2">The DTFT of a sampled signal is periodic with <span class="texhtml">2π</span>.</font> | ||
+ | |||
+ | ---- | ||
+ | == DTFT of a Cosine Sampled Above the Nyquist Rate == | ||
+ | |||
+ | For our original pure frequency, let’s choose the E below middle C. The E occurs at 330''Hz'' <p><span class="math"><em>x</em>(<em>t</em>) = <em>c</em><em>o</em><em>s</em>(2<em>π</em> * 330<em>t</em>)</span><br /></p> | ||
+ | <p>Now let’s sample this pure cosine at a frequency above the Nyquist Rate. The Nyquist Rate is: <br><span class="math"> ''f''<sub>''s''</sub> = 2 * ''f''<sub>''max''</sub> = 2 * (330''Hz'') = 660''Hz''</span>. Let’s sample at 990<span class="math">''Hz''</span>. | ||
+ | |||
+ | <math> \begin{align} \\ | ||
+ | x_d[n] & = x(n*\frac{1}{990Hz})\\ | ||
+ | & = cos(2\pi n *\frac{330}{990}) = \frac{e^{j2\pi n \frac{330}{990}} + e^{-j2\pi n \frac{330}{990}}}{2}\\ | ||
+ | & = cos(\frac{2\pi n}{3}) | ||
+ | \end{align} | ||
+ | </math> | ||
+ | <br /> | ||
+ | Because <font style="vertical-align:-150%;"><math>\left | \frac{2\pi}{3}\right | < \pi</math></font>, there is no aliasing occurring in the DTFT, and it can be written as follows: | ||
+ | |||
+ | <math> \begin{align} \\ | ||
+ | X(\omega) & = \frac{1}{2}(2\pi\delta(\omega - 2\pi \frac{330}{990}) + 2\pi\delta(\omega + 2\pi \frac{330}{990})) , \ \omega \in\ [-\pi,\pi]\\ | ||
+ | & = \frac{990}{2}(\delta(\frac{990}{2\pi}\omega - 330) + \delta(\frac{990}{2\pi}\omega + 330)) , \ \omega \in\ [-\pi,\pi]\\ | ||
+ | & = rep_{2\pi}(\frac{990}{2}(\delta(\frac{990}{2\pi}\omega - 330) + \delta(\frac{990}{2\pi}\omega + 330))), \forall \omega | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
+ | [[Image:AboveNyquist.jpg]] | ||
+ | ---- | ||
+ | == DTFT Of a Cosine Sampled Below the Nyquist Rate == | ||
+ | Let’s use the same pure frequency as above.</p> | ||
<p><span class="math"><em>x</em>(<em>t</em>) = <em>c</em><em>o</em><em>s</em>(2<em>π</em> * 330<em>t</em>)</span><br /></p> | <p><span class="math"><em>x</em>(<em>t</em>) = <em>c</em><em>o</em><em>s</em>(2<em>π</em> * 330<em>t</em>)</span><br /></p> | ||
− | <p>Now let’s sample this pure cosine at a frequency | + | <p>Now let’s sample this pure cosine at a frequency below the Nyquist Rate. From above, the Nyquist Rate is 660<span class="math"><em>H</em><em>z</em></span>. Let’s sample at 550<span class="math"><em>H</em><em>z</em></span>.</p> |
+ | <p><br /> | ||
+ | |||
+ | <math> \begin{align} \\ | ||
+ | x_d[n] & = x(n*\frac{1}{550Hz})\\ | ||
+ | & = cos(2\pi n *\frac{330}{550}) = \frac{e^{j2\pi n \frac{330}{550}} + e^{-j2\pi n \frac{330}{550}}}{2}\\ \\ | ||
+ | \end{align} | ||
+ | </math> <br /><br /> | ||
+ | |||
+ | Because <font style="vertical-align:-125%;"><math>\pi < \frac{2\pi 330}{550} < 2\pi</math></font>, aliasing occurs in the DTFT. The DTFT should be calculated with <span class="math"><em>ω</em> ∈ [ − <em>π</em>, <em>π</em>]</span>, so we will use the periodicity of cosine to shift <math>x_d[n]</math> into an appropriate range. | ||
+ | |||
+ | <br /> | ||
+ | ><math> \begin{align}\\ | ||
+ | x_{d}[n] & = cos(2\pi n*\frac{330}{550})\\ | ||
+ | & = cos(2\pi n*\frac{330}{550} - 2\pi n)\\ | ||
+ | & = cos(2\pi n*(\frac{330}{550} - \frac{550}{550}))\\ | ||
+ | & = cos(2\pi n*(\frac{-220}{550}))\\ | ||
+ | & = cos(2\pi n*\frac{220Hz}{550Hz}) | ||
+ | \end{align} | ||
+ | </math><br /></p> | ||
+ | <p>Now that the argument of the cosine <font style="vertical-align:-150%;"><math>\left | 2\pi \frac{220}{550}\right | < \pi</math></font>, we can take the DTFT of <span class="math"><em>x</em><sub><em>d</em></sub>[<em>n</em>]</span>, and the initial value will fall into a desired range for <span class="math"><em>ω</em></span>.</p> | ||
+ | <p><br /><math> \begin{align} | ||
+ | X(\omega) & = \frac{1}{2}(2\pi\delta(\omega - 2\pi \frac{220}{550}) + 2\pi\delta(\omega + 2\pi \frac{220}{550})) , \ \omega \in\ [-\pi,\pi]\\ | ||
+ | & = \frac{550}{2}(\delta(\frac{550}{2\pi}\omega - 220) + \delta(\frac{550}{2\pi}\omega + 220)) , \ \omega \in\ [-\pi,\pi]\\ | ||
+ | & = rep_{2\pi}(\frac{550}{2}(\delta(\frac{550}{2\pi}\omega - 220) + \delta(\frac{550}{2\pi}\omega + 220))), \forall \omega | ||
+ | \end{align}</math><br /></p> | ||
+ | |||
+ | [[Image:BelowNyquist.jpg]] | ||
+ | ---- | ||
+ | == Conclusion == | ||
+ | |||
+ | The DTFT of a sampled signal is always periodic with <math>2\pi</math>. So even though the DTFT of a signal sampled below Nyquist may initially not fall within <math>[-\pi,\pi]</math>, it can be extrapolated to the window you are interested in. In my derivation, I chose to shift the cosine before the DTFT. Looking at Figure 3, you can see the comparison between a cosine sampled above and below the Nyquist Rate. The cosine sampled below the Nyquist Rate exhibits aliasing. The aliased signal has a decreased magnitude compared to the original. The aliased signal also is at a different frequency. | ||
+ | |||
+ | [[Image:BothNyquist.jpg]] | ||
+ | |||
+ | ---- | ||
+ | == References == | ||
+ | [1] Mireille Boutin, "ECE 438 Digital Signal Processing with Applications," Purdue University. September 9, 2014. | ||
+ | |||
+ | ---- | ||
+ | ---- | ||
+ | ==[[Questions_DTFT_AboveBelowNyquist_Sahil|Questions and comments]]== | ||
+ | |||
+ | If you have any questions, comments, etc. please post them on [[Questions_DTFT_AboveBelowNyquist_Sahil|this page]] | ||
+ | <br /> | ||
+ | ---- | ||
+ | [[2014_Fall_ECE_438_Boutin_digital_signal_processing_slectures|Back to ECE438 slectures, Fall 2014]] | ||
− | [[ | + | [[Category:Slecture]] [[Category:ECE438Fall2014Boutin]] [[Category:ECE]] [[Category:ECE438]] [[Category:Signal_processing]] [[Category:Discrete-time_Fourier_transform]] |
Latest revision as of 19:04, 16 March 2015
DTFT of a Cosine Sampled Above and Below the Nyquist Rate
A slecture by ECE student Sahil Sanghani
Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.
Contents
Outline
- Introduction
- Useful Background
- DTFT Example of a Cosine Sampled Above the Nyquist Rate
- DTFT Example of a Cosine Sampled Below the Nyquist Rate
- Conclusion
- References
Introduction
In this Slecture, I will walk you through taking the DTFT of a pure frequency sampled above and below the Nyquist Rate. Then I will compare the differences between them.
Useful Background
Nyquist Condition: $ f_s = 2f_{max} $
DTFT of a Cosine: $ x_d[n] = cos(2\pi nT){\leftrightarrow}X(\omega) = \pi(\delta(\omega-\omega_o) + \delta(\omega+\omega_o)){ ,for\ } \omega \in [-\pi,\pi] $
The DTFT of a sampled signal is periodic with 2π.
DTFT of a Cosine Sampled Above the Nyquist Rate
For our original pure frequency, let’s choose the E below middle C. The E occurs at 330Hzx(t) = cos(2π * 330t)
Now let’s sample this pure cosine at a frequency above the Nyquist Rate. The Nyquist Rate is:
fs = 2 * fmax = 2 * (330Hz) = 660Hz. Let’s sample at 990Hz.
$ \begin{align} \\ x_d[n] & = x(n*\frac{1}{990Hz})\\ & = cos(2\pi n *\frac{330}{990}) = \frac{e^{j2\pi n \frac{330}{990}} + e^{-j2\pi n \frac{330}{990}}}{2}\\ & = cos(\frac{2\pi n}{3}) \end{align} $
Because $ \left | \frac{2\pi}{3}\right | < \pi $, there is no aliasing occurring in the DTFT, and it can be written as follows:
$ \begin{align} \\ X(\omega) & = \frac{1}{2}(2\pi\delta(\omega - 2\pi \frac{330}{990}) + 2\pi\delta(\omega + 2\pi \frac{330}{990})) , \ \omega \in\ [-\pi,\pi]\\ & = \frac{990}{2}(\delta(\frac{990}{2\pi}\omega - 330) + \delta(\frac{990}{2\pi}\omega + 330)) , \ \omega \in\ [-\pi,\pi]\\ & = rep_{2\pi}(\frac{990}{2}(\delta(\frac{990}{2\pi}\omega - 330) + \delta(\frac{990}{2\pi}\omega + 330))), \forall \omega \end{align} $
DTFT Of a Cosine Sampled Below the Nyquist Rate
Let’s use the same pure frequency as above.x(t) = cos(2π * 330t)
Now let’s sample this pure cosine at a frequency below the Nyquist Rate. From above, the Nyquist Rate is 660Hz. Let’s sample at 550Hz.
$ \begin{align} \\ x_d[n] & = x(n*\frac{1}{550Hz})\\ & = cos(2\pi n *\frac{330}{550}) = \frac{e^{j2\pi n \frac{330}{550}} + e^{-j2\pi n \frac{330}{550}}}{2}\\ \\ \end{align} $
Because $ \pi < \frac{2\pi 330}{550} < 2\pi $, aliasing occurs in the DTFT. The DTFT should be calculated with ω ∈ [ − π, π], so we will use the periodicity of cosine to shift $ x_d[n] $ into an appropriate range.
>$ \begin{align}\\ x_{d}[n] & = cos(2\pi n*\frac{330}{550})\\ & = cos(2\pi n*\frac{330}{550} - 2\pi n)\\ & = cos(2\pi n*(\frac{330}{550} - \frac{550}{550}))\\ & = cos(2\pi n*(\frac{-220}{550}))\\ & = cos(2\pi n*\frac{220Hz}{550Hz}) \end{align} $
Now that the argument of the cosine $ \left | 2\pi \frac{220}{550}\right | < \pi $, we can take the DTFT of xd[n], and the initial value will fall into a desired range for ω.
$ \begin{align} X(\omega) & = \frac{1}{2}(2\pi\delta(\omega - 2\pi \frac{220}{550}) + 2\pi\delta(\omega + 2\pi \frac{220}{550})) , \ \omega \in\ [-\pi,\pi]\\ & = \frac{550}{2}(\delta(\frac{550}{2\pi}\omega - 220) + \delta(\frac{550}{2\pi}\omega + 220)) , \ \omega \in\ [-\pi,\pi]\\ & = rep_{2\pi}(\frac{550}{2}(\delta(\frac{550}{2\pi}\omega - 220) + \delta(\frac{550}{2\pi}\omega + 220))), \forall \omega \end{align} $
Conclusion
The DTFT of a sampled signal is always periodic with $ 2\pi $. So even though the DTFT of a signal sampled below Nyquist may initially not fall within $ [-\pi,\pi] $, it can be extrapolated to the window you are interested in. In my derivation, I chose to shift the cosine before the DTFT. Looking at Figure 3, you can see the comparison between a cosine sampled above and below the Nyquist Rate. The cosine sampled below the Nyquist Rate exhibits aliasing. The aliased signal has a decreased magnitude compared to the original. The aliased signal also is at a different frequency.
References
[1] Mireille Boutin, "ECE 438 Digital Signal Processing with Applications," Purdue University. September 9, 2014.
Questions and comments
If you have any questions, comments, etc. please post them on this page