(Undo revision 67674 by Skwon (Talk))
 
(26 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
<br>  
 
<br>  
<center><font size="4"></font>  
+
<center>
 
<font size="4">Downsampling </font>  
 
<font size="4">Downsampling </font>  
  
Line 8: Line 8:
 
</center>  
 
</center>  
 
----
 
----
 +
----
 +
<br>
  
<font size="3"></font>  
+
== <font size="3"></font><font size="3"></font>Outline  ==
  
 
<font size="3"></font>  
 
<font size="3"></font>  
Line 33: Line 35:
 
<font size="3"></font>  
 
<font size="3"></font>  
  
<font size="3"></font>  
+
<font size="3"></font>
  
<font size="3"></font>  
+
<font size="3">
 +
#Introduction
 +
#Definition of Downsampling<br>
 +
#Derivation of DTFT&nbsp;of downsampled signal<br>
 +
#Example
 +
#Decimator
 +
#Conclusion<br>
  
<font size="3"></font>
+
----
  
<font size="3"></font>
+
== Introduction  ==
  
<font size="3"></font>
+
This slecture provides definition of downsampling, derives DTFT of&nbsp; downsampled signal and demonstrates it in a frequency domain. Also, it explains process of decimation and why it needs a low-pass filter.
  
<font size="3"></font>
+
----
  
<font size="3"></font>  
+
== Definition of Downsampling<br> ==
  
<font size="3"></font>  
+
Downsampling is an operation which involves throwing away samples from discrete-time signal. Let&nbsp; ''x[n]'' be a digital-time signal shown below: <br>  
  
<font size="3"></font>  
+
[[Image:Xofn.jpg]]<br>  
  
<font size="3"></font>
+
&nbsp;then y[n] will be produced by downsampling ''x [n]''&nbsp; by factor ''D'' = 3. So, ''y [n] = x[Dn]''.
  
<font size="3"></font>  
+
[[Image:Yofn.jpg]]<br>  
  
<font size="3"></font>
+
As seen in above graph, ''y [n]'' is obtained by throwing away some samples from x [n]. So, ''y [n]'' is a downsampled signal from
  
<font size="3"></font>  
+
''x [n]''.<br>  
  
<font size="3"></font>
+
----
  
<font size="3"></font>
+
== Derivation of DTFT&nbsp;of downsampled signal  ==
  
<font size="3"></font>  
+
Let ''x (t) ''be a continuous tim''e ''signal. Then ''x<sub>1</sub> [n] = x (T<sub>1</sub>n) ''and''&nbsp; x<sub>2</sub> [n] = x (T<sub>2</sub>n)''. And ratio of sampling periods would be
  
<font size="3"></font>  
+
D = T<sub>2</sub>/T<sub>1</sub>, &nbsp; which is an integer greater than 1. From these equations we obtain realtionship between ''x<sub>1</sub> [n]'' and ''x<sub>2</sub> [n]''. <br>  
  
<font size="3"></font>  
+
<math>\begin{align}
 +
x_2 [n] = x(T_2 n) = x(DT_1 n) = x_1 [nD]
 +
\end{align}</math>  
  
<font size="3"></font>  
+
Below we derive Discrete-Time Fourier Transform of ''x<sub>2</sub> [n]'' in terms of DTFT of ''x<sub>1</sub> [n]''.
  
<font size="3"></font>  
+
<br>  
  
<font size="3"></font>  
+
<math>\begin{align}
 +
&\mathcal{X}_2(\omega)= \mathcal{F}(x_2 [n]) = \mathcal{F}(x_1 [Dn])\\
 +
&=  \sum_{n = -\infty}^\infty x_1[Dn] e^{-j \omega n} =  \sum_{m = -\infty}^\infty x_1[m] e^{-j \omega {\frac{m}{D}}}\\
 +
&=  \sum_{n = -\infty}^\infty s_D[m]* x_1 [m] e^{-j \omega {\frac{m}{D}}}\\
 +
\end{align}</math>  
  
<font size="3"></font>
+
<br>  
  
<font size="3">
+
where <br>  
== Outline  ==
+
  
#Introduction
+
<math>s_D [m]=\left\{ \begin{array}{ll}
#Derivation<br>  
+
1,& \text{ if } n \text{ is a multiple of } D,\\
#Example
+
0, & \text{ else}.
#Conclusion
+
\end{array}\right. = {\frac{1}{D}} \sum_{k = -\infty}^{D-1} e^{jk {\frac{2 \pi}{D} m}}</math>
#References
+
  
----
+
<br>
  
== Introduction ==
+
<math>\begin{align}
 +
&\mathcal{X}_2(\omega)= \sum_{m = -\infty}^\infty {\frac{1}{D}} \sum_{k = -\infty}^{D-1} e^{jk {\frac{2 \pi}{D} m}} x_1[m] e^{-j \omega {\frac{m}{D}}}\\
 +
&= {\frac{1}{D}} \sum_{k = -\infty}^{D-1} \sum_{m = -\infty}^\infty  x_1[m] e^{-jm ({\frac{\omega - 2 \pi k}{D}})} =  \\
 +
&=  {\frac{1}{D}} \sum_{k = -\infty}^{D-1} \mathcal{X}_1 ({\frac{\omega - 2 \pi k}{D}}) \\
 +
\end{align}</math>
  
    In digital signal processing, the decimator performs decimation, which is downsampling a signal. In other words, when a digital signal is downsampled, the signal's sampling rate would be reduced.
+
----
  
 +
== Example<br>  ==
  
 +
<br>
  
== Derivation  ==
+
Let's take a look&nbsp; at&nbsp; an original signal ''X<sub>1</sub> (w)'' and&nbsp;&nbsp;''X<sub>2</sub> (w)'' which is obtained after downsampling X<sub>1</sub>(w) by factor D = 2 in a frequency domain.
  
== Example<br> ==
+
[[Image:Downsamplegraph.jpg]]<br>  
  
 
<br>  
 
<br>  
 +
 +
From two graphs it is seen that signal is stretched by D&nbsp; in frequency domain and&nbsp; decreased by D in a magnitude after downsampling. Both signals have the frequency of&nbsp;<math>\begin{align}
 +
2\pi
 +
\end{align}</math> .
 +
 +
== Decimator  ==
 +
 +
As seen in second graph, if&nbsp;<math>\begin{align}
 +
D2\pi T_1f_{max}
 +
\end{align}</math> is greater than <math>\begin{align}
 +
\pi
 +
\end{align}</math> aliasing occurs. Downsampler is a part of a decimator which also has a low-pass filter to&nbsp; prevent aliasing.&nbsp; LPF eliminates signal components which has&nbsp; frequencies higher than cutoff frequency, which can be found from graphs shown above.<br>
 +
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <math>\begin{align}
 +
& D\omega_c = D 2 \pi T_1 f_{max} < \pi\\
 +
& {\frac{T_2}{T_1}} 2\pi T_1 f_{max} < \pi \\
 +
&  2\pi T_2f_{max} < \pi \\
 +
&f_{max} < {\frac{1}{2T_2}}
 +
\end{align}</math>
 +
 +
Thereby, signal needs to be filtered before downsampling if f<sub>max</sub> &gt; 1/(2T<sub>2</sub>) . Complete block diagram of a decimator is shown below:<br>
  
 
<br>  
 
<br>  
  
----
+
[[Image:Decimator cutoff.jpg]]
  
== Example  ==
+
<br>
 +
 
 +
<br>
  
 
----
 
----
Line 176: Line 217:
  
 
<font size="3"></font>  
 
<font size="3"></font>  
 +
 +
<font size="3"></font>
 +
 +
<font size="3"></font>
 +
 +
<font size="3"></font>
 +
 +
<font size="3"></font>
 +
 +
<font size="3"></font>
 +
 +
<font size="3"></font>
 +
 +
<font size="3"></font>
 +
 +
<font size="3"></font>
 +
 +
<font size="3"></font>
 +
 +
<font size="3"></font>
 +
 +
<font size="3"></font>
 +
 +
<font size="3"></font>
 +
 +
<font size="3"></font>
 +
 +
<font size="3"></font>
 +
 +
<font size="3"></font>
 +
 +
<font size="3"></font>
 +
 +
<font size="3"></font>
 +
 +
<font size="3">To summarize, downsampling is a process of removing samples from signal. After downsampling,&nbsp; signal decreases by factor D in the magnitude and stretches by D in frequency domain.&nbsp; In order to downsample a signal, it first should be filtered by LPF to prevent aliasing.&nbsp; Both LPF and downsampler are parts of a decimator. </font>
 +
 +
<font size="3"></font>
 +
 +
----
 +
 +
<br>
 +
 +
----
 +
 +
----
 +
 +
----
 +
 +
== [[Yeshmukhanbetov ECE438 slecture review|Questions and comments]]  ==
 +
 +
If you have any questions, comments, etc. please post them on [[Yeshmukhanbetov ECE438 slecture review|this page]].
  
 
----
 
----
 +
[[2014_Fall_ECE_438_Boutin_digital_signal_processing_slectures|Back to ECE438 slectures, Fall 2014]]
  
== References ==
+
[[Category:Slecture]] [[Category:ECE438Fall2014Boutin]] [[Category:ECE]] [[Category:ECE438]] [[Category:Signal_processing]]

Latest revision as of 18:07, 16 March 2015


Downsampling

A slecture by ECE student Yerkebulan Yeshmukhanbetov

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.




Outline

  1. Introduction
  2. Definition of Downsampling
  3. Derivation of DTFT of downsampled signal
  4. Example
  5. Decimator
  6. Conclusion

Introduction

This slecture provides definition of downsampling, derives DTFT of  downsampled signal and demonstrates it in a frequency domain. Also, it explains process of decimation and why it needs a low-pass filter.


Definition of Downsampling

Downsampling is an operation which involves throwing away samples from discrete-time signal. Let  x[n] be a digital-time signal shown below:

Xofn.jpg

 then y[n] will be produced by downsampling x [n]  by factor D = 3. So, y [n] = x[Dn].

Yofn.jpg

As seen in above graph, y [n] is obtained by throwing away some samples from x [n]. So, y [n] is a downsampled signal from

x [n].


Derivation of DTFT of downsampled signal

Let x (t) be a continuous time signal. Then x1 [n] = x (T1n) and  x2 [n] = x (T2n). And ratio of sampling periods would be

D = T2/T1,   which is an integer greater than 1. From these equations we obtain realtionship between x1 [n] and x2 [n].

$ \begin{align} x_2 [n] = x(T_2 n) = x(DT_1 n) = x_1 [nD] \end{align} $

Below we derive Discrete-Time Fourier Transform of x2 [n] in terms of DTFT of x1 [n].


$ \begin{align} &\mathcal{X}_2(\omega)= \mathcal{F}(x_2 [n]) = \mathcal{F}(x_1 [Dn])\\ &= \sum_{n = -\infty}^\infty x_1[Dn] e^{-j \omega n} = \sum_{m = -\infty}^\infty x_1[m] e^{-j \omega {\frac{m}{D}}}\\ &= \sum_{n = -\infty}^\infty s_D[m]* x_1 [m] e^{-j \omega {\frac{m}{D}}}\\ \end{align} $


where

$ s_D [m]=\left\{ \begin{array}{ll} 1,& \text{ if } n \text{ is a multiple of } D,\\ 0, & \text{ else}. \end{array}\right. = {\frac{1}{D}} \sum_{k = -\infty}^{D-1} e^{jk {\frac{2 \pi}{D} m}} $


$ \begin{align} &\mathcal{X}_2(\omega)= \sum_{m = -\infty}^\infty {\frac{1}{D}} \sum_{k = -\infty}^{D-1} e^{jk {\frac{2 \pi}{D} m}} x_1[m] e^{-j \omega {\frac{m}{D}}}\\ &= {\frac{1}{D}} \sum_{k = -\infty}^{D-1} \sum_{m = -\infty}^\infty x_1[m] e^{-jm ({\frac{\omega - 2 \pi k}{D}})} = \\ &= {\frac{1}{D}} \sum_{k = -\infty}^{D-1} \mathcal{X}_1 ({\frac{\omega - 2 \pi k}{D}}) \\ \end{align} $


Example


Let's take a look  at  an original signal X1 (w) and  X2 (w) which is obtained after downsampling X1(w) by factor D = 2 in a frequency domain.

Downsamplegraph.jpg


From two graphs it is seen that signal is stretched by D  in frequency domain and  decreased by D in a magnitude after downsampling. Both signals have the frequency of $ \begin{align} 2\pi \end{align} $ .

Decimator

As seen in second graph, if $ \begin{align} D2\pi T_1f_{max} \end{align} $ is greater than $ \begin{align} \pi \end{align} $ aliasing occurs. Downsampler is a part of a decimator which also has a low-pass filter to  prevent aliasing.  LPF eliminates signal components which has  frequencies higher than cutoff frequency, which can be found from graphs shown above.

                             $ \begin{align} & D\omega_c = D 2 \pi T_1 f_{max} < \pi\\ & {\frac{T_2}{T_1}} 2\pi T_1 f_{max} < \pi \\ & 2\pi T_2f_{max} < \pi \\ &f_{max} < {\frac{1}{2T_2}} \end{align} $

Thereby, signal needs to be filtered before downsampling if fmax > 1/(2T2) . Complete block diagram of a decimator is shown below:


Decimator cutoff.jpg




Conclusion

To summarize, downsampling is a process of removing samples from signal. After downsampling,  signal decreases by factor D in the magnitude and stretches by D in frequency domain.  In order to downsample a signal, it first should be filtered by LPF to prevent aliasing.  Both LPF and downsampler are parts of a decimator.






Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE438 slectures, Fall 2014

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch