m (add background info and fix intro)
 
(7 intermediate revisions by 2 users not shown)
Line 33: Line 33:
 
Sampling above Nyquist frequency guarantees a bandlimited sampled CT signal's reconstruction. **add source**
 
Sampling above Nyquist frequency guarantees a bandlimited sampled CT signal's reconstruction. **add source**
 
<br>
 
<br>
Define Nyquist Sampling rate as <math> {f}_{s} = 2{f}_{M} </math>
+
Define Nyquist Sampling rate as <math> {f}_{Nyquist} = 2{f}_{M} </math>
 
<br>
 
<br>
 
<math>{f}_{M} </math> is max frequency of CT signal
 
<math>{f}_{M} </math> is max frequency of CT signal
Line 45: Line 45:
  
 
== Introduction ==
 
== Introduction ==
Sampling at frequencies much larger than Nyquist requires a filter for reconstruction with a less sharp cutoff. A digital LPF can be used to then obtain the reconstructed signal.  
+
Sampling at frequencies much larger than Nyquist requires a filter for reconstruction with a less sharp cutoff. A digital LPF can be used to then obtain the reconstructed signal. *add source*
**add picture & source**
+
 
<br><br>
 
<br><br>
 
Assume <math> {x}_{c}(t) </math> is a bandlimited CT signal,
 
Assume <math> {x}_{c}(t) </math> is a bandlimited CT signal,
Line 59: Line 58:
 
<math>{x}_{u}[n] = {x}_{c}(n{T}_{u})</math>, a signal sampled at a HIGHER sampling frequency than <math> {x}_{1}[n]</math>,
 
<math>{x}_{u}[n] = {x}_{c}(n{T}_{u})</math>, a signal sampled at a HIGHER sampling frequency than <math> {x}_{1}[n]</math>,
 
without having to fully reconstruct <math> {x}_{c}(t) </math>  
 
without having to fully reconstruct <math> {x}_{c}(t) </math>  
 
  
  
Line 65: Line 63:
 
----
 
----
 
== Derivation ==
 
== Derivation ==
 +
We want <math> {f}_{u} > {f}_{Nyquist} </math>. In this situation, this means <math> {f}_{u} > {f}_{1} </math>.
 +
<br>
 +
Therefore, we want <math>{T}_{u} < {T}_{1}</math>. (i.e. <math> {x}_{u}[n]</math> is sampled at a higher frequency than <math> {x}_{1}[n]</math>)
 +
<br> In other words, <br>
 +
<math> {T}_{u} =  {\frac{{T}_{1}}{D}} </math> for some integer D.
 +
<br>
 +
<br>
 +
<math> {x}_{1}[n] = x_{c}(n{T}_{1})</math>
 +
<br>
 +
<math>{x}_{u}[n] = {x}_{c}(n{T}_{u})</math>
 +
<br>
  
 +
<math>{x}_{u}[n] ={x}_{1}[n/D] = {x}_{c}(n{T}_{1}({T}_{u}/{T}_{1})) = {x}_{c}(n{T}_{u}) </math>if n/D is an integer
 +
<br>
 +
<math>{x}_{u}[n] = 0 </math> else.
 +
<br><br>
 +
In frequency domain: <br>
 +
<math>{X}_{u}({\omega}) = {\sum_{n = -{\infty}}^{\infty} {x}_{u}[n]e^{-j{\omega}n}}</math>
 +
<br>
 +
<math>{X}_{u}({\omega}) = {\sum_{n = -{\infty}}^{\infty} {x}_{1}[n/D]e^{-j{\omega}n}}</math>
 +
<br> let n=mD <br>
 +
<math>{X}_{u}({\omega}) = {\sum_{m = -{\infty}}^{\infty} {x}_{1}[m]e^{-j{\omega}mD}}</math>
 +
<br>
 +
<math>{X}_{u}({\omega}) ={X}_{1}(D{\omega}) </math> notice this is a rescaled version of <math> {X}_{1} </math>
  
 +
<br><br>
 +
In order to get <math>{x}_{int}(n) </math>, the reconstructed signal, we need to LPF <math> {X}_{u}({\omega}) </math>.
 +
<br>
 +
<math> {x}_{int}(n) = {x}_{u} * h(n) </math>
 +
<br>
 +
<math> h(n) = sinc(n/D) </math>
 +
----
 +
 +
 +
----
 +
 +
== Example ==
 +
 +
[[Image:X1w.jpg]]
 +
<br>
 +
[[Image:Xuw.jpg]]
 +
<br>
 +
[[Image:Hlpf.jpg]]
 +
<br>
 +
[[Image:Xint.jpg]]
 +
<br>
 +
----
 +
 +
 +
----
 +
Source: Prof. Mireille Boutin
 +
----
 +
----
 +
 +
== Questions/Comments ==
 +
[[QuestionPage]]
 +
 +
----
 
----
 
----
 +
[[2014_Fall_ECE_438_Boutin_digital_signal_processing_slectures|Back to ECE438 slectures, Fall 2014]]

Latest revision as of 09:00, 14 March 2015

Frequency Domain View of Upsampling

Why Interpolator needs a LPF after Upsampling


A slecture by ECE student Chloe Kauffman

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.


Outline

  1. Background
  2. Introduction
  3. Derivation
  4. Example
  5. Conclusion


Background

$ {f}_{s} $ = sampling frequency (number of samples/second) Hz
$ {T}_{s} $ = sampling period (number of seconds/sample) seconds
$ {f}_{s} = {\frac{1}{{T}_{s}}} $

Sampling above Nyquist frequency guarantees a bandlimited sampled CT signal's reconstruction. **add source**
Define Nyquist Sampling rate as $ {f}_{Nyquist} = 2{f}_{M} $
$ {f}_{M} $ is max frequency of CT signal




Introduction

Sampling at frequencies much larger than Nyquist requires a filter for reconstruction with a less sharp cutoff. A digital LPF can be used to then obtain the reconstructed signal. *add source*

Assume $ {x}_{c}(t) $ is a bandlimited CT signal, $ {x}_{1}[n] $ is a DT sampled signal of $ {x}_{c}(t) $ with sampling period $ {T}_{1} $

This leads to the question, can you use

$ {x}_{1}[n] = x_{c}(n{T}_{1}) $

to obtain

$ {x}_{u}[n] = {x}_{c}(n{T}_{u}) $, a signal sampled at a HIGHER sampling frequency than $ {x}_{1}[n] $, without having to fully reconstruct $ {x}_{c}(t) $




Derivation

We want $ {f}_{u} > {f}_{Nyquist} $. In this situation, this means $ {f}_{u} > {f}_{1} $.
Therefore, we want $ {T}_{u} < {T}_{1} $. (i.e. $ {x}_{u}[n] $ is sampled at a higher frequency than $ {x}_{1}[n] $)
In other words,
$ {T}_{u} = {\frac{{T}_{1}}{D}} $ for some integer D.

$ {x}_{1}[n] = x_{c}(n{T}_{1}) $
$ {x}_{u}[n] = {x}_{c}(n{T}_{u}) $

$ {x}_{u}[n] ={x}_{1}[n/D] = {x}_{c}(n{T}_{1}({T}_{u}/{T}_{1})) = {x}_{c}(n{T}_{u}) $if n/D is an integer
$ {x}_{u}[n] = 0 $ else.

In frequency domain:
$ {X}_{u}({\omega}) = {\sum_{n = -{\infty}}^{\infty} {x}_{u}[n]e^{-j{\omega}n}} $
$ {X}_{u}({\omega}) = {\sum_{n = -{\infty}}^{\infty} {x}_{1}[n/D]e^{-j{\omega}n}} $
let n=mD
$ {X}_{u}({\omega}) = {\sum_{m = -{\infty}}^{\infty} {x}_{1}[m]e^{-j{\omega}mD}} $
$ {X}_{u}({\omega}) ={X}_{1}(D{\omega}) $ notice this is a rescaled version of $ {X}_{1} $



In order to get $ {x}_{int}(n) $, the reconstructed signal, we need to LPF $ {X}_{u}({\omega}) $.
$ {x}_{int}(n) = {x}_{u} * h(n) $
$ h(n) = sinc(n/D) $




Example

X1w.jpg
Xuw.jpg
Hlpf.jpg
Xint.jpg




Source: Prof. Mireille Boutin



Questions/Comments

QuestionPage



Back to ECE438 slectures, Fall 2014

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman