(4 intermediate revisions by 2 users not shown)
Line 8: Line 8:
 
</center>  
 
</center>  
 
----
 
----
 +
 +
<font size="3"></font>
  
 
<font size="3"></font>  
 
<font size="3"></font>  
Line 45: Line 47:
 
F(x<sub>s</sub>(t)) = X<sub>s</sub>(f) = (1/T) * rep<sub>1/T</sub>(X(f))  
 
F(x<sub>s</sub>(t)) = X<sub>s</sub>(f) = (1/T) * rep<sub>1/T</sub>(X(f))  
  
Analytically, we can see that the frequency domain view of the sampling's amplitude is scaled by a factor of 1/T. The shape of the frequency responses are the same, but it is repeated every 1/T in the sampling's frequency response. In the following example we will see the relationship graphically
+
Analytically, we can see that the frequency domain view of the sampling's amplitude is scaled by a factor of 1/T. The shape of the frequency responses are the same, but it is repeated every 1/T in the sampling's frequency response. In the following example we will see the relationship graphically.<br>
 
+
&lt;span style="line-height: 1.5em;" /&gt;
+
 
+
&lt;span style="line-height: 1.5em;" /&gt; <font size="size"></font> <font size="size"></font>
+
 
<font size="size">
 
<font size="size">
 
----
 
----
  
== example ==
+
== Example ==
  
x(t) = cos(w<sub>o</sub>t) &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;X(f) = pi*(delta(w-w<sub>o</sub>) + delta(w+w<sub>o</sub>))<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;= 1/2*(delta(f - f<sub>o</sub>) + delta(f + f<sub>o</sub>))  
+
x(t) = cos(w<sub>o</sub>t) &nbsp; &nbsp;(pictured below)
  
 +
[[Image:XtEvan.JPG]]
  
  
[[Image:Cosine.gif]]
 
  
Continuous time plot of x(t) = cos(w<sub>o</sub>t)
 
  
  
 +
&nbsp;X(f) = pi*(delta(w-w<sub>o</sub>) + delta(w+w<sub>o</sub>))<br>&nbsp; &nbsp; &nbsp; &nbsp; = 1/2*(delta(f - f<sub>o</sub>) + delta(f + f<sub>o</sub>)) &nbsp; &nbsp; (pictured below)
  
 +
[[Image:Xf.JPG]]<br>
  
 
+
<br>  
x<sub>s</sub>(t) = cos(w<sub>o</sub>t) * p<sub>T</sub>(t) &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;X<sub>s</sub>(f) = (1/T)*rep1/T(1/2*(delta(f - f<sub>o</sub>) + delta(f + f<sub>o</sub>)))<br>&nbsp; &nbsp; &nbsp; &nbsp; = comb<sub>T</sub>(cos(w<sub>o</sub>t))
+
  
 
<br>  
 
<br>  
  
----
+
x<sub>s</sub>(t) = cos(w<sub>o</sub>t) * p<sub>T</sub>(t)<br>&nbsp; &nbsp; &nbsp; &nbsp; = combT(cos(w<sub>o</sub>t)) &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;(pictured below) &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;
  
== Derivation  ==
+
[[Image:XstEvan.JPG]]
</font></font>
+
  
<font size="3"><font size="size"></font></font>
 
  
<font size="3">Then we are going to find<span style="line-height: 1.5em;">etween </span><span class="texhtml" style="line-height: 1.5em;">''X''<sub>''s''</sub>(''f'')</span><span style="line-height: 1.5em;"> and</span></font>
 
  
<font size="3"><span style="line-height: 1.5em;"> </span><span class="texhtml" style="line-height: 1.5em;">''X''<sub>''d''</sub>(ω)</span><span style="line-height: 1.5em;"> and the relationship is showed in graph as below:</span> <font size="size"><font size="size"><font size="size"><font size="size"></font></font></font></font></font> <font size="size"><font size="size"><font size="size"></font></font></font>  
+
X<sub>s</sub>(f) = (1/T)*rep1/T(1/2*(delta(f - f<sub>o</sub>) + delta(f + f<sub>o</sub>))) &nbsp; &nbsp; &nbsp; (pictured below)<br>
  
<font size="size"><font size="size"><font size="size"></font></font></font>
+
[[Image:Xsf.JPG]]
  
<font size="size"><font size="size"><font size="size">
+
<br>
 +
</font></font><font size="size"><font size="size"><font size="size">
 
----
 
----
  
== example ==
+
== Conclusion ==
  
<br>
+
In conclusion, the frequency domain view of a sampled signal is a scaled and repeated version of the original continuous time signal. The amplitude is scaled by 1/T and the repitition occurs every 1/T.
 
+
fd
+
  
 
----
 
----
  
== conclusion  ==
+
If you have any questions, comments, etc. please post them [[Slecture_Topic_7_Evancomments|right here]].
 
+
So t<span class="texhtml">2π''T''</span>
+
 
+
----
+
 
</font></font></font>
 
</font></font></font>
 +
 +
<font size="size"><font size="size"><font size="size"></font></font></font>
  
 
<font size="size"><font size="size"><font size="size"></font></font></font>  
 
<font size="size"><font size="size"><font size="size"></font></font></font>  
Line 111: Line 103:
  
 
<font size="3"><font size="size"><font size="size"></font> </font> </font>  
 
<font size="3"><font size="size"><font size="size"></font> </font> </font>  
 +
----
 +
[[2014_Fall_ECE_438_Boutin_digital_signal_processing_slectures|Back to ECE438 slectures, Fall 2014]]
  
 
[[Category:Slecture]] [[Category:ECE438Fall2014Boutin]] [[Category:ECE]] [[Category:ECE438]] [[Category:Signal_processing]]
 
[[Category:Slecture]] [[Category:ECE438Fall2014Boutin]] [[Category:ECE]] [[Category:ECE438]] [[Category:Signal_processing]]

Latest revision as of 08:58, 14 March 2015


Frequency domain view of the relationship between a signal and a sampling of that signal

A slecture by ECE student Evan Stockrahm

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.


Outline

  1. Introduction
  2. Derivation
  3. Example
  4. Conclusion

Introduction

This slecture will discuss the frequency domain view of the relationship between a signal, and a sampling of that signal. Essentially, given a signal x(t), we are going to take a look at the similarities and differences in X(f) and Xs(f). Xs(f) is the Fourier Transform of the sampling, xs(t), of x(t).


Derivation

Given an arbitrary signal x(t), its Fourier Transform is X(f)

The sampling of signal x(t), is the comb of x(t), which is equivalent to multiplying x(t) by the impulse train pT(t).

So, xs(t) = x(t) x pT(t) = combT(x(t))

F(xs(t)) = Xs(f) = (1/T) * rep1/T(X(f))

Analytically, we can see that the frequency domain view of the sampling's amplitude is scaled by a factor of 1/T. The shape of the frequency responses are the same, but it is repeated every 1/T in the sampling's frequency response. In the following example we will see the relationship graphically.


Example

x(t) = cos(wot)    (pictured below)

XtEvan.JPG



 X(f) = pi*(delta(w-wo) + delta(w+wo))
        = 1/2*(delta(f - fo) + delta(f + fo))     (pictured below)

Xf.JPG



xs(t) = cos(wot) * pT(t)
        = combT(cos(wot))                            (pictured below)                

XstEvan.JPG


Xs(f) = (1/T)*rep1/T(1/2*(delta(f - fo) + delta(f + fo)))       (pictured below)

Xsf.JPG



Conclusion

In conclusion, the frequency domain view of a sampled signal is a scaled and repeated version of the original continuous time signal. The amplitude is scaled by 1/T and the repitition occurs every 1/T.


If you have any questions, comments, etc. please post them right here.


Back to ECE438 slectures, Fall 2014

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn