(Created page with "Category:random variables Category:probability <center> <font size= 4> ECE Ph.D. Qualifying Exam </font size> <font size= 4> Communicati...")
 
 
Line 22: Line 22:
 
Let <math class="inline">\left\{ t_{k}\right\}</math>  be the set of Poisson points corresponding to a homogeneous Poisson process with parameters <math class="inline">\lambda</math>  on the real line such that if <math class="inline">\mathbf{N}\left(t_{1},t_{2}\right)</math>  is defined as the number of points in the interval <math class="inline">\left[t_{1},t_{2}\right)</math> , then <math class="inline">P\left(\left\{ N\left(t_{1},t_{2}\right)=k\right\} \right)=\frac{\left[\lambda\left(t_{2}-t_{1}\right)\right]^{k}e^{-\lambda\left(t_{2}-t_{1}\right)}}{k!}\;,\qquad k=0,1,2,\cdots,\; t_{2}>t_{1}\geq0. Let \mathbf{X}\left(t\right)=\mathbf{N}\left(0,t\right)</math>  be the Poisson counting process for <math class="inline">t>0</math>  (note that <math class="inline">\mathbf{X}\left(0\right)=0</math> ).
 
Let <math class="inline">\left\{ t_{k}\right\}</math>  be the set of Poisson points corresponding to a homogeneous Poisson process with parameters <math class="inline">\lambda</math>  on the real line such that if <math class="inline">\mathbf{N}\left(t_{1},t_{2}\right)</math>  is defined as the number of points in the interval <math class="inline">\left[t_{1},t_{2}\right)</math> , then <math class="inline">P\left(\left\{ N\left(t_{1},t_{2}\right)=k\right\} \right)=\frac{\left[\lambda\left(t_{2}-t_{1}\right)\right]^{k}e^{-\lambda\left(t_{2}-t_{1}\right)}}{k!}\;,\qquad k=0,1,2,\cdots,\; t_{2}>t_{1}\geq0. Let \mathbf{X}\left(t\right)=\mathbf{N}\left(0,t\right)</math>  be the Poisson counting process for <math class="inline">t>0</math>  (note that <math class="inline">\mathbf{X}\left(0\right)=0</math> ).
  
(a)
+
(a) Find the (first order) characteristic function of <math class="inline">\mathbf{X}\left(t\right)</math> .
  
Find the (first order) characteristic function of <math class="inline">\mathbf{X}\left(t\right)</math> .
+
(b) Find the mean and variance of <math class="inline">\mathbf{X}\left(t\right)</math> .
 +
 
 +
(c) Derive an expression for the autocorrelation function of <math class="inline">\mathbf{X}\left(t\right)</math> .
 +
 
 +
(d) Assuming that <math class="inline">t_{2}>t_{1}</math> , find an expression for <math class="inline">P\left(\left\{ \mathbf{X}\left(t_{1}\right)=m\right\} \cap\left\{ \mathbf{X}\left(t_{2}\right)=n\right\} \right)</math> , for all <math class="inline">m=0,1,2,\cdots</math>  and <math class="inline">n=0,1,2,\cdots</math> .
 +
 
 +
----
 +
==Share and discuss your solutions below.==
 +
----
 +
==Solution 1==
 +
(a)
  
 
<math class="inline">\Phi_{\mathbf{X}}\left(\omega\right)=E\left[e^{i\omega\mathbf{X}}\right]=\sum_{k=0}^{\infty}e^{i\omega k}\frac{\left(\lambda t\right)^{k}e^{-\lambda t}}{k!}=e^{-\lambda t}\sum_{k=0}^{\infty}\frac{\left(\lambda te^{i\omega}\right)^{k}}{k!}=e^{-\lambda t}e^{\lambda te^{i\omega}}=e^{-\lambda t\left(1-e^{i\omega}\right)}.</math>  
 
<math class="inline">\Phi_{\mathbf{X}}\left(\omega\right)=E\left[e^{i\omega\mathbf{X}}\right]=\sum_{k=0}^{\infty}e^{i\omega k}\frac{\left(\lambda t\right)^{k}e^{-\lambda t}}{k!}=e^{-\lambda t}\sum_{k=0}^{\infty}\frac{\left(\lambda te^{i\omega}\right)^{k}}{k!}=e^{-\lambda t}e^{\lambda te^{i\omega}}=e^{-\lambda t\left(1-e^{i\omega}\right)}.</math>  
  
 
(b)
 
(b)
 
Find the mean and variance of <math class="inline">\mathbf{X}\left(t\right)</math> .
 
  
 
<math class="inline">E\left[\mathbf{X}\left(t\right)\right]=\frac{d}{di\omega}\Phi_{\mathbf{X}}\left(\omega\right)\biggl|_{i\omega=0}=\frac{d}{di\omega}e^{-\lambda t}e^{\lambda te^{i\omega}}\biggl|_{i\omega=0}=e^{-\lambda t}\cdot\frac{d}{di\omega}e^{\lambda te^{i\omega}}\biggl|_{i\omega=0}</math><math class="inline">=e^{-\lambda t}\cdot e^{\lambda te^{i\omega}}\cdot\lambda te^{i\omega}\biggl|_{i\omega=0}=e^{-\lambda t}\cdot e^{\lambda t}\cdot\lambda t=\lambda t.</math>  
 
<math class="inline">E\left[\mathbf{X}\left(t\right)\right]=\frac{d}{di\omega}\Phi_{\mathbf{X}}\left(\omega\right)\biggl|_{i\omega=0}=\frac{d}{di\omega}e^{-\lambda t}e^{\lambda te^{i\omega}}\biggl|_{i\omega=0}=e^{-\lambda t}\cdot\frac{d}{di\omega}e^{\lambda te^{i\omega}}\biggl|_{i\omega=0}</math><math class="inline">=e^{-\lambda t}\cdot e^{\lambda te^{i\omega}}\cdot\lambda te^{i\omega}\biggl|_{i\omega=0}=e^{-\lambda t}\cdot e^{\lambda t}\cdot\lambda t=\lambda t.</math>  
Line 36: Line 44:
 
<math class="inline">E\left[\mathbf{X}^{2}\left(t\right)\right]=\frac{d}{d\left(i\omega\right)^{2}}\Phi_{\mathbf{X}}\left(\omega\right)\biggl|_{i\omega=0}=\frac{d}{di\omega}\lambda te^{-\lambda t}e^{\lambda te^{i\omega}}e^{i\omega}\biggl|_{i\omega=0}</math><math class="inline">=\lambda te^{-\lambda t}\cdot\frac{d}{di\omega}e^{\lambda te^{i\omega}}e^{i\omega}\biggl|_{i\omega=0}</math><math class="inline">=\lambda te^{-\lambda t}\left(e^{\lambda te^{i\omega}}\lambda te^{i\omega}e^{i\omega}+e^{\lambda te^{i\omega}}e^{i\omega}\right)\biggl|_{i\omega=0}</math><math class="inline">=\lambda te^{-\lambda t}\left(\lambda te^{\lambda te^{i\omega}}e^{2i\omega}+e^{\lambda te^{i\omega}}e^{i\omega}\right)\biggl|_{i\omega=0}=\lambda te^{-\lambda t}\left(\lambda te^{\lambda t}+e^{\lambda t}\right)</math><math class="inline">=\lambda t\left(\lambda t+1\right)=\left(\lambda t\right)^{2}+\lambda t.</math>  
 
<math class="inline">E\left[\mathbf{X}^{2}\left(t\right)\right]=\frac{d}{d\left(i\omega\right)^{2}}\Phi_{\mathbf{X}}\left(\omega\right)\biggl|_{i\omega=0}=\frac{d}{di\omega}\lambda te^{-\lambda t}e^{\lambda te^{i\omega}}e^{i\omega}\biggl|_{i\omega=0}</math><math class="inline">=\lambda te^{-\lambda t}\cdot\frac{d}{di\omega}e^{\lambda te^{i\omega}}e^{i\omega}\biggl|_{i\omega=0}</math><math class="inline">=\lambda te^{-\lambda t}\left(e^{\lambda te^{i\omega}}\lambda te^{i\omega}e^{i\omega}+e^{\lambda te^{i\omega}}e^{i\omega}\right)\biggl|_{i\omega=0}</math><math class="inline">=\lambda te^{-\lambda t}\left(\lambda te^{\lambda te^{i\omega}}e^{2i\omega}+e^{\lambda te^{i\omega}}e^{i\omega}\right)\biggl|_{i\omega=0}=\lambda te^{-\lambda t}\left(\lambda te^{\lambda t}+e^{\lambda t}\right)</math><math class="inline">=\lambda t\left(\lambda t+1\right)=\left(\lambda t\right)^{2}+\lambda t.</math>  
  
<math class="inline">Var\left[\mathbf{X}\left(t\right)\right]=E\left[\mathbf{X}^{2}\left(t\right)\right]-\left(E\left[\mathbf{X}\left(t\right)\right]\right)^{2}=\left(\lambda t\right)^{2}+\lambda t-\left(\lambda t\right)^{2}=\lambda t.</math>  
+
<math class="inline">Var\left[\mathbf{X}\left(t\right)\right]=E\left[\mathbf{X}^{2}\left(t\right)\right]-\left(E\left[\mathbf{X}\left(t\right)\right]\right)^{2}=\left(\lambda t\right)^{2}+\lambda t-\left(\lambda t\right)^{2}=\lambda t.</math>
  
 
(c)
 
(c)
 
Deriven an expression for the autocorrelation function of <math class="inline">\mathbf{X}\left(t\right)</math> .
 
  
 
<math class="inline">R_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math>  
 
<math class="inline">R_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math>  
 +
  
 
(d)
 
(d)
 
Assuming that <math class="inline">t_{2}>t_{1}</math> , find an expression for <math class="inline">P\left(\left\{ \mathbf{X}\left(t_{1}\right)=m\right\} \cap\left\{ \mathbf{X}\left(t_{2}\right)=n\right\} \right)</math> , for all <math class="inline">m=0,1,2,\cdots</math>  and <math class="inline">n=0,1,2,\cdots</math> .
 
  
 
<math class="inline">P\left(\left\{ \mathbf{X}\left(t_{1}\right)=m\right\} \cap\left\{ \mathbf{X}\left(t_{2}\right)=n\right\} \right)</math>
 
<math class="inline">P\left(\left\{ \mathbf{X}\left(t_{1}\right)=m\right\} \cap\left\{ \mathbf{X}\left(t_{2}\right)=n\right\} \right)</math>
 +
 +
----

Latest revision as of 16:48, 13 March 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2001



4. (35 Points)

Let $ \left\{ t_{k}\right\} $ be the set of Poisson points corresponding to a homogeneous Poisson process with parameters $ \lambda $ on the real line such that if $ \mathbf{N}\left(t_{1},t_{2}\right) $ is defined as the number of points in the interval $ \left[t_{1},t_{2}\right) $ , then $ P\left(\left\{ N\left(t_{1},t_{2}\right)=k\right\} \right)=\frac{\left[\lambda\left(t_{2}-t_{1}\right)\right]^{k}e^{-\lambda\left(t_{2}-t_{1}\right)}}{k!}\;,\qquad k=0,1,2,\cdots,\; t_{2}>t_{1}\geq0. Let \mathbf{X}\left(t\right)=\mathbf{N}\left(0,t\right) $ be the Poisson counting process for $ t>0 $ (note that $ \mathbf{X}\left(0\right)=0 $ ).

(a) Find the (first order) characteristic function of $ \mathbf{X}\left(t\right) $ .

(b) Find the mean and variance of $ \mathbf{X}\left(t\right) $ .

(c) Derive an expression for the autocorrelation function of $ \mathbf{X}\left(t\right) $ .

(d) Assuming that $ t_{2}>t_{1} $ , find an expression for $ P\left(\left\{ \mathbf{X}\left(t_{1}\right)=m\right\} \cap\left\{ \mathbf{X}\left(t_{2}\right)=n\right\} \right) $ , for all $ m=0,1,2,\cdots $ and $ n=0,1,2,\cdots $ .


Share and discuss your solutions below.


Solution 1

(a)

$ \Phi_{\mathbf{X}}\left(\omega\right)=E\left[e^{i\omega\mathbf{X}}\right]=\sum_{k=0}^{\infty}e^{i\omega k}\frac{\left(\lambda t\right)^{k}e^{-\lambda t}}{k!}=e^{-\lambda t}\sum_{k=0}^{\infty}\frac{\left(\lambda te^{i\omega}\right)^{k}}{k!}=e^{-\lambda t}e^{\lambda te^{i\omega}}=e^{-\lambda t\left(1-e^{i\omega}\right)}. $

(b)

$ E\left[\mathbf{X}\left(t\right)\right]=\frac{d}{di\omega}\Phi_{\mathbf{X}}\left(\omega\right)\biggl|_{i\omega=0}=\frac{d}{di\omega}e^{-\lambda t}e^{\lambda te^{i\omega}}\biggl|_{i\omega=0}=e^{-\lambda t}\cdot\frac{d}{di\omega}e^{\lambda te^{i\omega}}\biggl|_{i\omega=0} $$ =e^{-\lambda t}\cdot e^{\lambda te^{i\omega}}\cdot\lambda te^{i\omega}\biggl|_{i\omega=0}=e^{-\lambda t}\cdot e^{\lambda t}\cdot\lambda t=\lambda t. $

$ E\left[\mathbf{X}^{2}\left(t\right)\right]=\frac{d}{d\left(i\omega\right)^{2}}\Phi_{\mathbf{X}}\left(\omega\right)\biggl|_{i\omega=0}=\frac{d}{di\omega}\lambda te^{-\lambda t}e^{\lambda te^{i\omega}}e^{i\omega}\biggl|_{i\omega=0} $$ =\lambda te^{-\lambda t}\cdot\frac{d}{di\omega}e^{\lambda te^{i\omega}}e^{i\omega}\biggl|_{i\omega=0} $$ =\lambda te^{-\lambda t}\left(e^{\lambda te^{i\omega}}\lambda te^{i\omega}e^{i\omega}+e^{\lambda te^{i\omega}}e^{i\omega}\right)\biggl|_{i\omega=0} $$ =\lambda te^{-\lambda t}\left(\lambda te^{\lambda te^{i\omega}}e^{2i\omega}+e^{\lambda te^{i\omega}}e^{i\omega}\right)\biggl|_{i\omega=0}=\lambda te^{-\lambda t}\left(\lambda te^{\lambda t}+e^{\lambda t}\right) $$ =\lambda t\left(\lambda t+1\right)=\left(\lambda t\right)^{2}+\lambda t. $

$ Var\left[\mathbf{X}\left(t\right)\right]=E\left[\mathbf{X}^{2}\left(t\right)\right]-\left(E\left[\mathbf{X}\left(t\right)\right]\right)^{2}=\left(\lambda t\right)^{2}+\lambda t-\left(\lambda t\right)^{2}=\lambda t. $

(c)

$ R_{\mathbf{XX}}\left(t_{1},t_{2}\right) $


(d)

$ P\left(\left\{ \mathbf{X}\left(t_{1}\right)=m\right\} \cap\left\{ \mathbf{X}\left(t_{2}\right)=n\right\} \right) $


Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva