(One intermediate revision by the same user not shown)
Line 17: Line 17:
 
</font size>
 
</font size>
  
August 2003
+
August 2007
 
</center>
 
</center>
 
----
 
----
Line 40: Line 40:
  
 
Please see the [[ECE 600 Exams Sequence of binomially distributed random variables|example]] that is identical to this problem.
 
Please see the [[ECE 600 Exams Sequence of binomially distributed random variables|example]] that is identical to this problem.
 +
 +
----
 +
----

Latest revision as of 09:58, 10 March 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2007



2. (25 Points)

Let $ \left\{ \mathbf{X}_{n}\right\} _{n\geq1} $ be a sequence of binomially distributed random variables, with the $ n $ -th random variable $ \mathbf{X}_{n} $ having pmf $ p_{\mathbf{X}_{n}}\left(k\right)=P\left(\left\{ \mathbf{X}_{n}=k\right\} \right)=\left(\begin{array}{c} n\\ k \end{array}\right)p_{n}^{k}\left(1-p_{n}\right)^{n-k}\;,\qquad k=0,\cdots,n,\quad p_{n}\in\left(0,1\right). $

Show that, if the $ p_{n} $ have the property that $ np_{n}\rightarrow\lambda $ as $ n\rightarrow\infty $ , where $ \lambda $ is a positive constant, then the sequence $ \left\{ \mathbf{X}_{n}\right\} _{n\geq1} $ converges in distribution to a Poisson random variable $ \mathbf{X} $ with mean $ \lambda $ .

Hint:

You may find the following fact useful:

$ \lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}. $

Answer

Please see the example that is identical to this problem.



Alumni Liaison

EISL lab graduate

Mu Qiao