(One intermediate revision by one other user not shown)
Line 6: Line 6:
 
[[Category:probability]]
 
[[Category:probability]]
  
= [[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]: COMMUNICATIONS, NETWORKING, SIGNAL AND IMAGE PROESSING (CS)- Question 1, August 2005=
+
<center>
 +
<font size= 4>
 +
[[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]
 +
</font size>
 +
 
 +
<font size= 4>
 +
Communication, Networking, Signal and Image Processing (CS)
 +
 
 +
Question 1: Probability and Random Processes
 +
</font size>
 +
 
 +
August 2005
 +
</center>
 +
----
 
----
 
----
 
==Question==
 
==Question==
'''Part 1. '''
+
'''1. (30 Points)'''
  
Write Statement here
+
Assume that <math class="inline">\mathbf{X}</math>  is a binomial distributed random variable with probability mass function (pmf) given by <math class="inline">p_{n}\left(k\right)=\left(\begin{array}{c}
 +
n\\
 +
k
 +
\end{array}\right)p^{k}\left(1-p\right)^{n-k}\;,\qquad k=0,1,2,\cdots,n</math> where <math class="inline">0<p<1</math> .
 +
 
 +
'''(a)'''
 +
 
 +
Find the characteristic function of <math class="inline">\mathbf{X}</math> . (You must show how you derive the characteristic function.)
 +
 
 +
'''(b)'''
 +
 
 +
Compute the standard deviation of <math class="inline">\mathbf{X}</math> .
 +
 
 +
'''(c)'''
 +
 
 +
Find the value or values of <math class="inline">k</math>  for which <math class="inline">p_{n}\left(k\right)</math>  is maximum, and express the answer in terms of <math class="inline">p</math>  and <math class="inline">n</math> . Give the most complete answer to this question that you can.
  
 
:'''Click [[ECE_PhD_QE_CNSIP_2005_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2005_Problem1.1|answers and discussions]]'''
 
:'''Click [[ECE_PhD_QE_CNSIP_2005_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2005_Problem1.1|answers and discussions]]'''
 
----
 
----
'''Part 2.'''
+
'''2. (30 Points)'''
 +
 
 +
Let <math class="inline">\mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n},\cdots</math>  be a sequence of binomially distributed random variables, with <math class="inline">\mathbf{X}_{n}</math>  having probability mass function <math class="inline">p_{n}\left(k\right)=\left(\begin{array}{c}
 +
n\\
 +
k
 +
\end{array}\right)p_{n}^{k}\left(1-p_{n}\right)^{n-k}\;,\qquad k=0,1,2,\cdots,n,</math> where <math class="inline">0<p_{n}<1</math>  for all <math class="inline">n=1,2,3,\cdots</math> . Show that if <math class="inline">np_{n}\rightarrow\lambda\text{ as }n\rightarrow\infty,</math> then the random sequence <math class="inline">\mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n},\cdots</math>  converges in distribution to a Poisson random variable having mean <math class="inline">\lambda</math> .
  
Write question here.
 
  
 
:'''Click [[ECE_PhD_QE_CNSIP_2005_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2005_Problem1.2|answers and discussions]]'''
 
:'''Click [[ECE_PhD_QE_CNSIP_2005_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2005_Problem1.2|answers and discussions]]'''
 
----
 
----
'''Part 3.'''
+
'''3. (40 Points)'''
  
Write question here.
+
Consider a homogeneous Poisson point process with rate <math class="inline">\lambda</math>  and points (event occurrence times) <math class="inline">\mathbf{T}_{1},\mathbf{T}_{2},\cdots,\mathbf{T}_{n},\cdots</math> .
  
:'''Click [[ECE_PhD_QE_CNSIP_2005_Problem1.3|here]] to view student [[ECE_PhD_QE_CNSIP_2005_Problem1.3|answers and discussions]]'''
+
'''(a)'''
----
+
'''Part 4.'''
+
  
Write question here.
+
Derive the pdf <math class="inline">f_{k}\left(t\right)</math>  of the <math class="inline">k</math> -th point <math class="inline">\mathbf{T}_{k}</math>  for arbitrary <math class="inline">k</math> .
  
:'''Click [[ECE_PhD_QE_CNSIP_2005_Problem1.4|here]] to view student [[ECE_PhD_QE_CNSIP_2005_Problem1.4|answers and discussions]]'''
+
'''(b)'''
 +
 
 +
What kind of distribution does <math class="inline">\mathbf{T}_{1}</math>  have?
 +
 
 +
'''(c)'''
 +
 
 +
What is the conditional pdf of <math class="inline">\mathbf{T}_{k}</math>  given <math class="inline">\mathbf{T}_{k-1}=t_{0}</math> , where <math class="inline">t_{0}>0</math> ? (You can give the answer without derivation if you know it.)
 +
 
 +
'''(d)'''
 +
 
 +
Suppose you have a random number generator that produces independent, identically distributed (i.i.d. ) random variables <math class="inline">\mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n},\cdots</math>  that are uniformaly distributed on the interval <math class="inline">\left(0,1\right)</math> . Explain how you could use these to simulate the Poisson points <math class="inline">\mathbf{T}_{1},\mathbf{T}_{2},\cdots,\mathbf{T}_{n},\cdots</math>  describe above. Provide as complete an explanation as possible.
 +
 
 +
:'''Click [[ECE_PhD_QE_CNSIP_2005_Problem1.3|here]] to view student [[ECE_PhD_QE_CNSIP_2005_Problem1.3|answers and discussions]]'''
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 00:54, 10 March 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2005



Question

1. (30 Points)

Assume that $ \mathbf{X} $ is a binomial distributed random variable with probability mass function (pmf) given by $ p_{n}\left(k\right)=\left(\begin{array}{c} n\\ k \end{array}\right)p^{k}\left(1-p\right)^{n-k}\;,\qquad k=0,1,2,\cdots,n $ where $ 0<p<1 $ .

(a)

Find the characteristic function of $ \mathbf{X} $ . (You must show how you derive the characteristic function.)

(b)

Compute the standard deviation of $ \mathbf{X} $ .

(c)

Find the value or values of $ k $ for which $ p_{n}\left(k\right) $ is maximum, and express the answer in terms of $ p $ and $ n $ . Give the most complete answer to this question that you can.

Click here to view student answers and discussions

2. (30 Points)

Let $ \mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n},\cdots $ be a sequence of binomially distributed random variables, with $ \mathbf{X}_{n} $ having probability mass function $ p_{n}\left(k\right)=\left(\begin{array}{c} n\\ k \end{array}\right)p_{n}^{k}\left(1-p_{n}\right)^{n-k}\;,\qquad k=0,1,2,\cdots,n, $ where $ 0<p_{n}<1 $ for all $ n=1,2,3,\cdots $ . Show that if $ np_{n}\rightarrow\lambda\text{ as }n\rightarrow\infty, $ then the random sequence $ \mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n},\cdots $ converges in distribution to a Poisson random variable having mean $ \lambda $ .


Click here to view student answers and discussions

3. (40 Points)

Consider a homogeneous Poisson point process with rate $ \lambda $ and points (event occurrence times) $ \mathbf{T}_{1},\mathbf{T}_{2},\cdots,\mathbf{T}_{n},\cdots $ .

(a)

Derive the pdf $ f_{k}\left(t\right) $ of the $ k $ -th point $ \mathbf{T}_{k} $ for arbitrary $ k $ .

(b)

What kind of distribution does $ \mathbf{T}_{1} $ have?

(c)

What is the conditional pdf of $ \mathbf{T}_{k} $ given $ \mathbf{T}_{k-1}=t_{0} $ , where $ t_{0}>0 $ ? (You can give the answer without derivation if you know it.)

(d)

Suppose you have a random number generator that produces independent, identically distributed (i.i.d. ) random variables $ \mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n},\cdots $ that are uniformaly distributed on the interval $ \left(0,1\right) $ . Explain how you could use these to simulate the Poisson points $ \mathbf{T}_{1},\mathbf{T}_{2},\cdots,\mathbf{T}_{n},\cdots $ describe above. Provide as complete an explanation as possible.

Click here to view student answers and discussions

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman