(4 intermediate revisions by 3 users not shown)
Line 4: Line 4:
 
[[Category:problem solving]]
 
[[Category:problem solving]]
 
[[Category:random variables]]
 
[[Category:random variables]]
 +
[[Category:probability]]
  
= [[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]: COMMUNICATIONS, NETWORKING, SIGNAL AND IMAGE PROESSING (CS)- Question 1, August 2004=
+
<center>
 +
<font size= 4>
 +
[[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]
 +
</font size>
 +
 
 +
<font size= 4>
 +
Communication, Networking, Signal and Image Processing (CS)
 +
 
 +
Question 1: Probability and Random Processes
 +
</font size>
 +
 
 +
August 2004
 +
</center>
 +
----
 
----
 
----
 
==Question==
 
==Question==
Write it here
+
'''1. (20 pts.)'''
 +
 
 +
A probability space <math class="inline">\left(\mathcal{S},\mathcal{F},\mathcal{P}\right)</math>  has a sample space consisting of all pairs of positive integers: <math class="inline">\mathcal{S}=\left\{ \left(k,m\right):\; k=1,2,\cdots;\; m=1,2,\cdots\right\}</math> . The event space <math class="inline">\mathcal{F}</math>  is the power set of <math class="inline">\mathcal{S}</math> , and the probability measure <math class="inline">\mathcal{P}</math>  is specified by the pmf <math class="inline">p\left(k,m\right)=p^{2}\left(1-p\right)^{k+m-2},\qquad p\in\left(0,1\right)</math>.
 +
 
 +
(a)
 +
 
 +
Find <math class="inline">P\left(\left\{ \left(k,m\right):\; k\geq m\right\} \right)</math> .
 +
 
 +
(b)
 +
 
 +
Find <math class="inline">P\left(\left\{ \left(k,m\right):\; k+m=r\right\} \right)</math> , for <math class="inline">r=2,3,\cdots</math> .
 +
 
 +
'''(c)'''
 +
 
 +
Find <math class="inline">P\left(\left\{ \left(k,m\right):\; k\text{ is an odd number}\right\} \right)</math> .
 +
 
 +
:'''Click [[ECE_PhD_QE_CNSIP_2004_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2004_Problem1.1|answers and discussions]]'''
 
----
 
----
=Solution 1 (retrived from [[ |here]])=
+
'''2. (20 pts.)'''
  
 +
Let <math class="inline">\mathbf{X}</math>  and <math class="inline">\mathbf{Y}</math>  be two independent identically distributed exponential random variables having mean <math class="inline">\mu</math> . Let <math class="inline">\mathbf{Z}=\mathbf{X}+\mathbf{Y}</math> . Find <math class="inline">f_{\mathbf{X}}\left(x|\mathbf{Z}=z\right)</math> , the conditional pdf of <math class="inline">\mathbf{X}</math>  given the event <math class="inline">\left\{ \mathbf{Z}=z\right\}</math>  .
  
 +
:'''Click [[ECE_PhD_QE_CNSIP_2004_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2004_Problem1.2|answers and discussions]]'''
 
----
 
----
==Solution 2==
+
'''3. (25 pts.)'''
Write it here.
+
 
 +
Let <math class="inline">\mathbf{X}_{1},\cdots,\mathbf{X}_{n}</math>  be independent identically distributed (i.i.d. ) random variables uniformaly distributed over the interval <math class="inline">\left[0,1\right]</math> .
 +
 
 +
'''(a)'''
 +
 
 +
Find the probability density function of <math class="inline">\mathbf{Y}=\max\left\{ \mathbf{X}_{1},\cdots,\mathbf{X}_{n}\right\}</math> .
 +
 
 +
'''(b)'''
 +
 
 +
Find the probability density function of <math class="inline">\mathbf{Z}=\min\left\{ \mathbf{X}_{1},\cdots,\mathbf{X}_{n}\right\}</math> .
 +
 
 +
:'''Click [[ECE_PhD_QE_CNSIP_2004_Problem1.3|here]] to view student [[ECE_PhD_QE_CNSIP_2004_Problem1.3|answers and discussions]]'''
 +
----
 +
 
 +
'''4. (35 pts.)'''
 +
 
 +
Assume that <math class="inline">\mathbf{X}\left(t\right)</math>  is a zero-mean, continuous-time, Gaussian white noise process with autocorrelation function <math class="inline">R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=\frac{N_{0}}{2}\delta\left(t_{1}-t_{2}\right).</math> Let <math class="inline">\mathbf{Y}\left(t\right)</math>  be a new random process defined as the output of a linear time-invariant system with impulse response <math class="inline">h\left(t\right)=\frac{1}{T}e^{-t/T}\cdot u\left(t\right),</math>  where <math class="inline">u\left(t\right)</math>  is the unit step function and <math class="inline">T>0</math> .
 +
 
 +
'''(a)'''
 +
 
 +
What is the mean of <math class="inline">\mathbf{Y\left(t\right)}</math> ?
 +
 
 +
'''(b)'''
 +
 
 +
What is the autocorrelation function of <math class="inline">\mathbf{Y}\left(t\right)</math> ?
 +
 
 +
'''(c)'''
 +
 
 +
Write an expression for the <math class="inline">n</math> -th order characteristic function of <math class="inline">\mathbf{Y}\left(t\right)</math>  sampled at time <math class="inline">t_{1},t_{2},\cdots,t_{n}</math> . Simplify as much as possible.
 +
 
 +
'''(d)'''
 +
 
 +
Write an expression for the second-order pdf <math class="inline">f_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}\left(y_{1},y_{2}\right)</math>  of <math class="inline">\mathbf{Y}\left(t\right)</math> . simplify as much as possible.
 +
 
 +
'''(e)'''
 +
 
 +
Find the minium mean-square estimate of <math class="inline">\mathbf{Y}\left(t_{2}\right)</math>  given that <math class="inline">\mathbf{Y}\left(t_{1}\right)=y_{1}</math> . Simplify your answer as much as possible.
 +
 
 +
:'''Click [[ECE_PhD_QE_CNSIP_2004_Problem1.4|here]] to view student [[ECE_PhD_QE_CNSIP_2004_Problem1.4|answers and discussions]]'''
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 00:17, 10 March 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2004



Question

1. (20 pts.)

A probability space $ \left(\mathcal{S},\mathcal{F},\mathcal{P}\right) $ has a sample space consisting of all pairs of positive integers: $ \mathcal{S}=\left\{ \left(k,m\right):\; k=1,2,\cdots;\; m=1,2,\cdots\right\} $ . The event space $ \mathcal{F} $ is the power set of $ \mathcal{S} $ , and the probability measure $ \mathcal{P} $ is specified by the pmf $ p\left(k,m\right)=p^{2}\left(1-p\right)^{k+m-2},\qquad p\in\left(0,1\right) $.

(a)

Find $ P\left(\left\{ \left(k,m\right):\; k\geq m\right\} \right) $ .

(b)

Find $ P\left(\left\{ \left(k,m\right):\; k+m=r\right\} \right) $ , for $ r=2,3,\cdots $ .

(c)

Find $ P\left(\left\{ \left(k,m\right):\; k\text{ is an odd number}\right\} \right) $ .

Click here to view student answers and discussions

2. (20 pts.)

Let $ \mathbf{X} $ and $ \mathbf{Y} $ be two independent identically distributed exponential random variables having mean $ \mu $ . Let $ \mathbf{Z}=\mathbf{X}+\mathbf{Y} $ . Find $ f_{\mathbf{X}}\left(x|\mathbf{Z}=z\right) $ , the conditional pdf of $ \mathbf{X} $ given the event $ \left\{ \mathbf{Z}=z\right\} $ .

Click here to view student answers and discussions

3. (25 pts.)

Let $ \mathbf{X}_{1},\cdots,\mathbf{X}_{n} $ be independent identically distributed (i.i.d. ) random variables uniformaly distributed over the interval $ \left[0,1\right] $ .

(a)

Find the probability density function of $ \mathbf{Y}=\max\left\{ \mathbf{X}_{1},\cdots,\mathbf{X}_{n}\right\} $ .

(b)

Find the probability density function of $ \mathbf{Z}=\min\left\{ \mathbf{X}_{1},\cdots,\mathbf{X}_{n}\right\} $ .

Click here to view student answers and discussions

4. (35 pts.)

Assume that $ \mathbf{X}\left(t\right) $ is a zero-mean, continuous-time, Gaussian white noise process with autocorrelation function $ R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=\frac{N_{0}}{2}\delta\left(t_{1}-t_{2}\right). $ Let $ \mathbf{Y}\left(t\right) $ be a new random process defined as the output of a linear time-invariant system with impulse response $ h\left(t\right)=\frac{1}{T}e^{-t/T}\cdot u\left(t\right), $ where $ u\left(t\right) $ is the unit step function and $ T>0 $ .

(a)

What is the mean of $ \mathbf{Y\left(t\right)} $ ?

(b)

What is the autocorrelation function of $ \mathbf{Y}\left(t\right) $ ?

(c)

Write an expression for the $ n $ -th order characteristic function of $ \mathbf{Y}\left(t\right) $ sampled at time $ t_{1},t_{2},\cdots,t_{n} $ . Simplify as much as possible.

(d)

Write an expression for the second-order pdf $ f_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}\left(y_{1},y_{2}\right) $ of $ \mathbf{Y}\left(t\right) $ . simplify as much as possible.

(e)

Find the minium mean-square estimate of $ \mathbf{Y}\left(t_{2}\right) $ given that $ \mathbf{Y}\left(t_{1}\right)=y_{1} $ . Simplify your answer as much as possible.

Click here to view student answers and discussions

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett