Line 22: Line 22:
 
----
 
----
 
==Question==
 
==Question==
'''Part 1. '''
 
  
Write Statement here
+
'''Problem 1 (30 points)'''
 +
 
 +
'''i)'''
 +
 
 +
Let <math class="inline">\mathbf{X}</math>  and <math class="inline">\mathbf{Y}</math>  be jointly Gaussian (normal) distributed random variables with mean <math class="inline">0</math> , <math class="inline">E\left[\mathbf{X}^{2}\right]=E\left[\mathbf{Y}^{2}\right]=\sigma^{2}</math>  and <math class="inline">E\left[\mathbf{XY}\right]=\rho\sigma^{2}</math>  with <math class="inline">\left|\rho\right|<1</math> . Find the joint characteristic function <math class="inline">E\left[e^{i\left(h_{1}\mathbf{X}+h_{2}\mathbf{Y}\right)}\right]</math> .
 +
 
 +
'''ii)'''
 +
 
 +
Let <math class="inline">\mathbf{X}</math>  and <math class="inline">\mathbf{Y}</math>  be two jointly Gaussian distributed r.v's with identical means and variances but are not necessarily independent. Show that the r.v. <math class="inline">\mathbf{V}=\mathbf{X}+\mathbf{Y}</math>  is independeent of the r.v. <math class="inline">\mathbf{W}=\mathbf{X}-\mathbf{Y}</math> . Is the same answer true for <math class="inline">\mathbf{A}=f\left(\mathbf{V}\right)</math>  and <math class="inline">\mathbf{B}=g\left(\mathbf{W}\right)</math>  where <math class="inline">f\left(\cdot\right)</math>  and <math class="inline">g\left(\cdot\right)</math>  are suitable functions such that <math class="inline">E\left[f\left(\mathbf{V}\right)\right]<\infty</math>  and <math class="inline">E\left[g\left(\mathbf{W}\right)\right]<\infty</math> . Given reasons.
 +
 
 +
'''iii)'''
 +
 
 +
Let <math class="inline">\mathbf{X}</math>  and <math class="inline">\mathbf{Y}</math>  be independent <math class="inline">N\left(m,1\right)</math>  random variables. Show that the sample mean <math class="inline">\mathbf{M}=\frac{\mathbf{X}+\mathbf{Y}}{2}</math>  is independent of the sample variance <math class="inline">\mathbf{V}=\left(\mathbf{X}-\mathbf{M}\right)^{2}+\left(\mathbf{Y}-\mathbf{M}\right)^{2}</math> .
  
 
:'''Click [[ECE_PhD_QE_CNSIP_2003_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2003_Problem1.1|answers and discussions]]'''
 
:'''Click [[ECE_PhD_QE_CNSIP_2003_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2003_Problem1.1|answers and discussions]]'''
 
----
 
----
'''Part 2.'''
+
'''Problem 2 (35 points)'''
  
Write question here.
+
Consider the stochastic process <math class="inline">\left\{ \mathbf{X}_{n}\right\}</math>  defined by: <math class="inline">\mathbf{X}_{n+1}=a\mathbf{X}_{n}+b\mathbf{W}_{n} where \mathbf{X}_{0}\sim N\left(0,\sigma^{2}\right)</math>  and <math class="inline">\left\{ \mathbf{W}_{n}\right\}</math>  is an i.i.d.  <math class="inline">N\left(0,1\right)</math>  sequence of r.v's independent of <math class="inline">\mathbf{X}_{0}</math> .
 +
 
 +
'''i)'''
 +
 
 +
Show that if <math class="inline">R_{k}=cov\left(\mathbf{X}_{k},\mathbf{X}_{k}\right)</math>  converges as <math class="inline">k\rightarrow\infty</math> , then <math class="inline">\left\{ \mathbf{X}_{k}\right\}</math>  converges to a w.s.s. process.
 +
 
 +
'''ii)'''
 +
 
 +
Show that if <math class="inline">\sigma^{2}</math>  is chosen appropriately and <math class="inline">\left|a\right|<1</math> , then <math class="inline">\left\{ \mathbf{X}_{k}\right\}</math>  will be a stationary process for all <math class="inline">k</math> .
 +
 
 +
'''iii)'''
 +
 
 +
If <math class="inline">\left|a\right|>1</math> , show that the variance of the process <math class="inline">\left\{ \mathbf{X}_{k}\right\}</math>  diverges but <math class="inline">\frac{\mathbf{X}_{k}}{\left|a\right|^{k}}</math>  converges in the mean square.
  
 
:'''Click [[ECE_PhD_QE_CNSIP_2003_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2003_Problem1.2|answers and discussions]]'''
 
:'''Click [[ECE_PhD_QE_CNSIP_2003_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2003_Problem1.2|answers and discussions]]'''
 
----
 
----
'''Part 3.'''
+
'''Problem 3 (35 points)'''
  
Write question here.
+
'''i)'''
  
:'''Click [[ECE_PhD_QE_CNSIP_2003_Problem1.3|here]] to view student [[ECE_PhD_QE_CNSIP_2003_Problem1.3|answers and discussions]]'''
+
Catastrophes occur at times <math class="inline">\mathbf{T}_{1},\mathbf{T}_{2},\cdots</math>,  where <math class="inline">\mathbf{T}_{i}=\sum_{k=1}^{i}\mathbf{X}_{k}</math>  where the <math class="inline">\mathbf{X}_{k}</math> 's are independent, identically distributed positive random variables. Let <math class="inline">\mathbf{N}_{t}=\max\left\{ n:\mathbf{T}_{n}\leq t\right\}</math>  be the number of catastrophes which have occurred by time <math class="inline">t</math> . Show that if <math class="inline">E\left[\mathbf{X}_{1}\right]<\infty</math>  then <math class="inline">\mathbf{N}_{t}\rightarrow\infty</math>  almost surely (a.s.) and <math class="inline">\frac{\mathbf{N}_{t}}{t}\rightarrow\frac{1}{E\left[\mathbf{X}_{1}\right]}</math>  as <math class="inline">t\rightarrow\infty</math>  a.s.
----
+
'''Part 4.'''
+
  
Write question here.
+
'''ii)'''
  
:'''Click [[ECE_PhD_QE_CNSIP_2003_Problem1.4|here]] to view student [[ECE_PhD_QE_CNSIP_2003_Problem1.4|answers and discussions]]'''
+
Let <math class="inline">\left\{ \mathbf{X}_{t},t\geq0\right\}</math>  be a stochastic process defined by: <math class="inline">\mathbf{X}_{t}=\sqrt{2}\cos\left(2\pi\xi t\right)</math> where <math class="inline">\xi</math>  is a <math class="inline">N\left(0,1\right)</math>  random variable. Show that as <math class="inline">t\rightarrow\infty,\;\left\{ \mathbf{X}_{t}\right\}</math>  converges to a wide sense stationary process. Find the spectral density of the limit process.
 +
 
 +
'''Hint:'''
 +
 
 +
Use the fact that the characteristic function of a <math class="inline">N\left(0,1\right)</math>  r.v. is given by <math class="inline">E\left[e^{ih\mathbf{X}}\right]=e^{-\frac{h^{2}}{2}}</math> .
 +
 
 +
:'''Click [[ECE_PhD_QE_CNSIP_2003_Problem1.3|here]] to view student [[ECE_PhD_QE_CNSIP_2003_Problem1.3|answers and discussions]]'''
 +
----
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 23:37, 9 March 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2003



Question

Problem 1 (30 points)

i)

Let $ \mathbf{X} $ and $ \mathbf{Y} $ be jointly Gaussian (normal) distributed random variables with mean $ 0 $ , $ E\left[\mathbf{X}^{2}\right]=E\left[\mathbf{Y}^{2}\right]=\sigma^{2} $ and $ E\left[\mathbf{XY}\right]=\rho\sigma^{2} $ with $ \left|\rho\right|<1 $ . Find the joint characteristic function $ E\left[e^{i\left(h_{1}\mathbf{X}+h_{2}\mathbf{Y}\right)}\right] $ .

ii)

Let $ \mathbf{X} $ and $ \mathbf{Y} $ be two jointly Gaussian distributed r.v's with identical means and variances but are not necessarily independent. Show that the r.v. $ \mathbf{V}=\mathbf{X}+\mathbf{Y} $ is independeent of the r.v. $ \mathbf{W}=\mathbf{X}-\mathbf{Y} $ . Is the same answer true for $ \mathbf{A}=f\left(\mathbf{V}\right) $ and $ \mathbf{B}=g\left(\mathbf{W}\right) $ where $ f\left(\cdot\right) $ and $ g\left(\cdot\right) $ are suitable functions such that $ E\left[f\left(\mathbf{V}\right)\right]<\infty $ and $ E\left[g\left(\mathbf{W}\right)\right]<\infty $ . Given reasons.

iii)

Let $ \mathbf{X} $ and $ \mathbf{Y} $ be independent $ N\left(m,1\right) $ random variables. Show that the sample mean $ \mathbf{M}=\frac{\mathbf{X}+\mathbf{Y}}{2} $ is independent of the sample variance $ \mathbf{V}=\left(\mathbf{X}-\mathbf{M}\right)^{2}+\left(\mathbf{Y}-\mathbf{M}\right)^{2} $ .

Click here to view student answers and discussions

Problem 2 (35 points)

Consider the stochastic process $ \left\{ \mathbf{X}_{n}\right\} $ defined by: $ \mathbf{X}_{n+1}=a\mathbf{X}_{n}+b\mathbf{W}_{n} where \mathbf{X}_{0}\sim N\left(0,\sigma^{2}\right) $ and $ \left\{ \mathbf{W}_{n}\right\} $ is an i.i.d. $ N\left(0,1\right) $ sequence of r.v's independent of $ \mathbf{X}_{0} $ .

i)

Show that if $ R_{k}=cov\left(\mathbf{X}_{k},\mathbf{X}_{k}\right) $ converges as $ k\rightarrow\infty $ , then $ \left\{ \mathbf{X}_{k}\right\} $ converges to a w.s.s. process.

ii)

Show that if $ \sigma^{2} $ is chosen appropriately and $ \left|a\right|<1 $ , then $ \left\{ \mathbf{X}_{k}\right\} $ will be a stationary process for all $ k $ .

iii)

If $ \left|a\right|>1 $ , show that the variance of the process $ \left\{ \mathbf{X}_{k}\right\} $ diverges but $ \frac{\mathbf{X}_{k}}{\left|a\right|^{k}} $ converges in the mean square.

Click here to view student answers and discussions

Problem 3 (35 points)

i)

Catastrophes occur at times $ \mathbf{T}_{1},\mathbf{T}_{2},\cdots $, where $ \mathbf{T}_{i}=\sum_{k=1}^{i}\mathbf{X}_{k} $ where the $ \mathbf{X}_{k} $ 's are independent, identically distributed positive random variables. Let $ \mathbf{N}_{t}=\max\left\{ n:\mathbf{T}_{n}\leq t\right\} $ be the number of catastrophes which have occurred by time $ t $ . Show that if $ E\left[\mathbf{X}_{1}\right]<\infty $ then $ \mathbf{N}_{t}\rightarrow\infty $ almost surely (a.s.) and $ \frac{\mathbf{N}_{t}}{t}\rightarrow\frac{1}{E\left[\mathbf{X}_{1}\right]} $ as $ t\rightarrow\infty $ a.s.

ii)

Let $ \left\{ \mathbf{X}_{t},t\geq0\right\} $ be a stochastic process defined by: $ \mathbf{X}_{t}=\sqrt{2}\cos\left(2\pi\xi t\right) $ where $ \xi $ is a $ N\left(0,1\right) $ random variable. Show that as $ t\rightarrow\infty,\;\left\{ \mathbf{X}_{t}\right\} $ converges to a wide sense stationary process. Find the spectral density of the limit process.

Hint:

Use the fact that the characteristic function of a $ N\left(0,1\right) $ r.v. is given by $ E\left[e^{ih\mathbf{X}}\right]=e^{-\frac{h^{2}}{2}} $ .

Click here to view student answers and discussions


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang