(Created page with "'''2. (25 Points)''' Let <math class="inline">\mathbf{X}</math> and <math class="inline">\mathbf{Y}</math> be independent Poisson random variables with mean <math class="in...")
 
Line 1: Line 1:
 +
[[Category:random variables]]
 +
[[Category:probability]]
 +
 +
<center>
 +
<font size= 4>
 +
[[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]
 +
</font size>
 +
 +
<font size= 4>
 +
Communication, Networking, Signal and Image Processing (CS)
 +
 +
Question 1: Probability and Random Processes
 +
</font size>
 +
 +
August 2001
 +
</center>
 +
----
 +
----
 +
 
'''2. (25 Points)'''
 
'''2. (25 Points)'''
  

Revision as of 00:31, 9 March 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2001



2. (25 Points)

Let $ \mathbf{X} $ and $ \mathbf{Y} $ be independent Poisson random variables with mean $ \lambda $ and $ \mu $ , respectively. Let $ \mathbf{Z} $ be a new random variable defined as $ \mathbf{Z}=\mathbf{X}+\mathbf{Y}. $

(a) Find the probability mass function (pmf) of $ \mathbf{Z} $ .

(b)Find the conditional probability mass function (pmf) of $ \mathbf{X} $ conditional on the event $ \left\{ \mathbf{Z}=n\right\} $ . Identify the type of pmf that this is, and fully specify its parameters.

Note

This problem is identical to the example: Addition of two independent Poisson random variables.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang