(9 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
+ | [[Category:Formulas]] | ||
+ | [[Category:probability]] | ||
+ | |||
+ | <center><font size= 4> | ||
+ | '''[[Collective_Table_of_Formulas|Collective Table of Formulas]]''' | ||
+ | </font size> | ||
+ | |||
+ | Probability Formulas | ||
+ | |||
+ | click [[Collective_Table_of_Formulas|here]] for [[Collective_Table_of_Formulas|more formulas]] | ||
+ | |||
+ | </center> | ||
+ | |||
+ | ---- | ||
{| | {| | ||
|- | |- | ||
− | ! style="background: | + | ! style="background: rgb(228, 188, 126) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Probability Formulas |
|- | |- | ||
− | ! style="background: | + | ! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Properties of Probability Functions |
|- | |- | ||
| align="right" style="padding-right: 1em;" | The complement of an event A (i.e. the event A not occurring) | | align="right" style="padding-right: 1em;" | The complement of an event A (i.e. the event A not occurring) | ||
Line 22: | Line 36: | ||
| align="right" style="padding-right: 1em;" | Total Probability Law | | align="right" style="padding-right: 1em;" | Total Probability Law | ||
| <math>\,P(B) = P(B|A_1)P(A_1) + \dots + P(B|A_n)P(A_n)\,</math> | | <math>\,P(B) = P(B|A_1)P(A_1) + \dots + P(B|A_n)P(A_n)\,</math> | ||
− | + | <math> \mbox{ where } \{A_1,\dots,A_n\} \mbox{ is a partition of sample space } S, B \mbox{ is an event }.</math> | |
|- | |- | ||
| align="right" style="padding-right: 1em;" | Bayes Theorem | | align="right" style="padding-right: 1em;" | Bayes Theorem | ||
| <math>\,P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^{n}P(B|A_i)P(A_i)},\ \{A_i\} \mbox{ and } B \mbox{ are as above }.</math> | | <math>\,P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^{n}P(B|A_i)P(A_i)},\ \{A_i\} \mbox{ and } B \mbox{ are as above }.</math> | ||
− | |||
− | |||
− | |||
|- | |- | ||
− | ! style="background: | + | ! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Expectation and Variance of Random Variables |
|- | |- | ||
| align="right" style="padding-right: 1em;" | Binomial random variable with parameters n and p | | align="right" style="padding-right: 1em;" | Binomial random variable with parameters n and p | ||
Line 53: | Line 64: | ||
---- | ---- | ||
− | + | ==Relevant Courses== | |
+ | *[[ECE600|ECE600]] | ||
+ | *[[ECE302|ECE302]] | ||
+ | ---- | ||
[[Collective Table of Formulas|Back to Collective Table]] | [[Collective Table of Formulas|Back to Collective Table]] | ||
[[Category:Formulas]] | [[Category:Formulas]] |
Latest revision as of 11:54, 3 March 2015
Probability Formulas
click here for more formulas
Probability Formulas | |
---|---|
Properties of Probability Functions | |
The complement of an event A (i.e. the event A not occurring) | $ \,P(A^c) = 1 - P(A)\, $ |
The intersection of two independent events A and B | $ \,P(A \mbox{ and }B) = P(A \cap B) = P(A) P(B)\, $ |
The union of two events A and B (i.e. either A or B occurring) | $ \,P(A \mbox{ or } B) = P(A) + P(B) - P(A \mbox{ and } B)\, $ |
The union of two mutually exclusive events A and B | $ \,P(A \mbox{ or } B) = P(A \cup B)= P(A) + P(B)\, $ |
Event A occurs given that event B has occurred | $ \,P(A \mid B) = \frac{P(A \cap B)}{P(B)}\, $ |
Total Probability Law | $ \,P(B) = P(B|A_1)P(A_1) + \dots + P(B|A_n)P(A_n)\, $
$ \mbox{ where } \{A_1,\dots,A_n\} \mbox{ is a partition of sample space } S, B \mbox{ is an event }. $ |
Bayes Theorem | $ \,P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^{n}P(B|A_i)P(A_i)},\ \{A_i\} \mbox{ and } B \mbox{ are as above }. $ |
Expectation and Variance of Random Variables | |
Binomial random variable with parameters n and p | $ \,E[X] = np,\ \ Var(X) = np(1-p)\, $ |
Poisson random variable with parameter $ \lambda $ | $ \,E[X] = \lambda,\ \ Var(X) = \lambda\, $ |
Geometric random variable with parameter p | $ \,E[X] = \frac{1}{p},\ \ Var(X) = \frac{1-p}{p^2}\, $ |
Uniform random variable over (a,b) | $ \,E[X] = \frac{a+b}{2},\ \ Var(X) = \frac{(b-a)^2}{12}\, $ |
Gaussian random variable with parameter $ \mu \mbox{ and } \sigma^2 $ | $ \,E[X] = \mu,\ \ Var(X) = \sigma^2\, $ |
Exponential random variable with parameter $ \lambda $ | $ \,E[X] = \frac{1}{\lambda},\ \ Var(X) = \frac{1}{\lambda^2}\, $ |