(15 intermediate revisions by 2 users not shown)
Line 1: Line 1:
[[Category:slecture]]
+
[[Category:bonus point project]]
 
[[Category:ECE438Fall2014Boutin]]  
 
[[Category:ECE438Fall2014Boutin]]  
 
[[Category:ECE]]
 
[[Category:ECE]]
 
[[Category:ECE438]]
 
[[Category:ECE438]]
[[Category:signal processing]]
+
[[Category:signal processing]]
 +
[[Category:z transform]]
 +
[[Category:tutorial]]
  
<center><font size= 5>
 
Inverse Z Transform
 
</font size></center>
 
 
<font size= 4>
 
 
Overview
 
<font size= 3>
 
:The purpose of this page is to...
 
: I. Define the Z Transform and Inverse Z Transform
 
: II. Provide Example Problems of the Inverse Z Transform
 
</font size>
 
 
<font size= 4>
 
I. Definitions
 
</font size>
 
 
<font size= 3>
 
: Z Transform
 
<center>
 
<math>X(z)=\mathcal{L}(x[n])=\sum_{n=-\infty}^{\infty}x[n]z^{-n}</math>
 
</center>
 
: Inverse Z Transform
 
 
<center>
 
<center>
<math>x[n]=\mathcal{L}^{-1}(X(z))=\frac{1}{2\pi j}\oint_{c}X(z)z^{n-1}dz</math>
+
==Inverse Z Transform==
 +
Student project for [[2014_Fall_ECE_438_Boutin|ECE438 Fall 2014]]
 
</center>
 
</center>
 +
----
 +
----
 +
'''Introduction'''
 +
The Z Transform is the generalized version of the DTFT. You can obtain the Z Transform from the DTFT by replacing <math>e^{j\omega}</math> with <math> re^{j\omega} </math> which is equivalent to z. The The DTFT is equal to the Z Transform when <math>|z| =1 </math>
  
<font size= 4>
+
<math>
II. Example Problems of the Inverse Z Transform
+
\begin{align}
</font size>
+
\text{DTFT: }
  
<font size= 3>
+
X(w) &= \sum_{n=-\infty}^\infty x[n]e^{-j\omega n}\\
:We will find the Inverse Z transform of various signals by manipulation and then using direct Inversion.
+
:On the first example we will go slowly over each step.
+
  
Ex. 1 Find the Inverse Z transform of the following signal
+
\text{Z-Transform: }
 +
   
 +
X(z) &= \sum_{n=-\infty}^\infty x[n]z^{-n}\\
  
<math>X(z)=\frac{1}{1-z}, \text{ ROC } |z|<1 </math>
+
\text{Inv. Z-Transform: }
 +
   
 +
x[n] &= \frac{1}{2\pi j}\oint_{c}X(z)z^{n-1}dz
  
::<font size = 2>note: It is important to realize that we are not going to try to use the direct formula for an inverse Z transform, Instead our approach will be to manipulate the signal so that we can directly compare it with the Z transform equation and by inspection obtain the Inverse Z transform.</font size>
+
\end{align}
 +
</math>
 +
----
 +
'''Region of Convergence (ROC)'''
 +
The ROC determines the region on the Z Plane where the Z Transform converges. The ROC depends solely on the 'r' value that is contained in 'z'. The ROC is one of three cases;
 +
:1. The ROC starts from a circle centered at the origin and fills in toward the origin
 +
:2. The ROC starts from a circle centered at the origin and extends outward to infinity
 +
:3. The ROC is the space in between two circles centered at the origin.
 +
If the ROC includes the unit circle then the DTFT converges for that function if it is not included, then it does not.
  
:<font size= 2>First we need to manipulate the given ROC inequality to be in the following form, with 'A' being some expression that contains z</font size>
+
<math>
<center><math>|A| < 1</math></center>
+
\begin{align}
 +
\text{Remember: }
 +
z &=re^{j\omega}
 +
\end{align}
 +
</math>
  
:<font size= 2>In this case this is already satisfied with </font size>
+
The ROC is determined when preforming Z transforms and is given when preforming inverse Z transforms.
<center><math>A = z</math></center>
+
----
 +
'''Solving an inverse Z Transform'''
 +
To find the Inverse Z transform of signals use manipulation then direct Inversion. Do not use formula directly!
  
:<font size= 2>Then we need to manipulate the given signal to be in the following form, B is just some expression that is the result of adjusting the equation (in this case B = 1)</font size>
+
The Infinite Geometric Series formula is used in most problems involving Inv. Z transform.
<center><math>X(z)=B\frac{1}{1-A}</math></center>
+
  
:<font size=2>Using a infinite Geometric sum we can obtain following...</font size>
+
<math>
 +
\begin{align}
 +
\text{Infinite Geometric Series: }
 +
X(z) &= \sum_{n=-\infty}^{\infty} (a)r^{n} u[n]\\
 +
      &= \sum_{n=0}^{\infty} (a)r^{n}\\
 +
      &= \frac{a}{1-r}\\
 +
\end{align}
 +
</math>
  
<center><math>X(z) = \sum_{n=0}^{\infty} 1(z^{n}) = \sum_{n=-\infty}^{\infty} z^{n} u[n]</math></center>
+
it can be seen that this general form is already starting to look like that of the Z Transform, with some change of variables we can manipulate this equation to be that of a Z transform and then by comparison find the inverse z transform.
 +
----
 +
'''Examples'''
  
<center><math>\text{let } k = -n \text{ then, } X(z) = \sum_{k=-\infty}^{\infty} z^{-k} u[-k]= \sum_{k=-\infty}^{\infty}u[-k] z^{-k}</math></center>
+
Ex. 1 Find the Inverse Z transform of the following signal
  
:<font size= 2> By comparison with the Z Transform definition, we can determine <math> x[n] </math></font size>
+
<math>X(z)=\frac{1}{1-z}, \text{ ROC } |z|<1 </math>
  
<center><math>x[n] = u[-n]</math></center>
+
:notice: ROC is type 1
 +
Solution
 +
 
 +
<math>
 +
\begin{align}
 +
X(x) &= \frac{1}{1-z}\\
 +
      &= \sum_{n=0}^{\infty} 1(z^{n}) \text{  if } |z| < 1\\
 +
      &= \sum_{n=-\infty}^{\infty} z^{n} u[n]\\
 +
      &\text{let }k = -n\\
 +
      &= \sum_{k=-\infty}^{\infty} z^{-k} u[-k]\\
 +
      &= \sum_{k=-\infty}^{\infty}u[-k] z^{-k}\\
 +
      &\text{By comparison with the Z Transform definition..}\\
 +
x[n] &= u[-n]\\
 +
\end{align}
 +
</math>
  
 
Ex. 2 Find the Inverse Z transform of the following signal  
 
Ex. 2 Find the Inverse Z transform of the following signal  
Line 69: Line 91:
 
<math>X(z)=\frac{1}{1-z}, \text{ ROC } |z|>1 </math>
 
<math>X(z)=\frac{1}{1-z}, \text{ ROC } |z|>1 </math>
  
:<font size= 2>First we need to manipulate the given ROC inequality to be in the following form, with 'A' being some expression that contains z</font size>
+
:notice: ROC is type 2
<center><math>|A| < 1</math></center>
+
Solution
  
:<font size= 2>In this case</font size>
+
<math>
<center><math>A = \frac{1}{z}</math></center>
+
\begin{align}
 +
X(z) &= \frac{1}{1-z} \\
 +
      &= \frac{1}{z} \frac{1}{1-(-\frac{1}{z})}\\
 +
      & \text{Using a infinite Geometric series...}\\
 +
      &= \sum_{n=0}^{\infty} (\frac{-1}{z})^{n}\frac{1}{z} \text{  if } |-\frac{1}{z}| < 1\\
 +
      &=  \sum_{n=0}^{\infty}(-1)^{n} z^{-n-1} \\
 +
      &=  \sum_{n=-\infty}^{\infty} (-1)^{n} z^{-n-1} u[n]\\
 +
      &\text{ let } k=n+1 \\
 +
      &=  \sum_{k=-\infty}^{\infty}(-1)^{k-1} z^{-k} u[k-1] \\
 +
      &=  \sum_{k=-\infty}^{\infty} (-1)^{k-1} u[k-1] z^{-k}\\
 +
      &\text{By comparison with the Z Transform definition...}\\
 +
x[n] &=(-1)^{n-1} u[n-1]\\
 +
\end{align}
 +
</math>
  
:<font size= 2>Manipulate the given signal</font size>
+
Ex. 3 Find the Inverse Z transform of the following signal  
<center><math>X(z)=\frac{1}{1-z} = \frac{1}{z} \frac{1}{1-(-\frac{1}{z})}</math></center>
+
  
:<font size=2>Using a infinite Geometric sum we can obtain</font size>
+
<math>X(z)=\frac{z}{1-5z}, \text{ ROC } |z|<\frac{1}{5} </math>
  
<center><math>X(z) =  \sum_{n=0}^{\infty} (\frac{-1}{z})^{n}\frac{1}{z} =  \sum_{n=0}^{\infty}(-1)^{n} z^{-n-1} =  \sum_{n=-\infty}^{\infty} (-1)^{n} z^{-n-1} u[n]</math></center>
+
:notice: ROC is type 1
 +
Solution
  
<center><math> \text{ let } k=n+1, \text{ then } X(z) = \sum_{k=-\infty}^{\infty}(-1)^{k-1} z^{-k} u[k-1] = \sum_{k=-\infty}^{\infty} (-1)^{k-1} u[k-1] z^{-k}</math></center>
+
<math>
 
+
\begin{align}
:<font size= 2> By comparison with the Z Transform definition, we can determine <math> x[n] </math></font size>
+
X(x) &= \frac{z}{1+5z}\\
 
+
      &= \frac{z}{1-(-5z)}\\
<center><math>x[n] = (-1)^{n-1} u[n-1]</math></center>
+
      &= \sum_{n=0}^{\infty} z(-5z^{n}) \text{  if } |z| < \frac{1}{5}\\
 +
      &= \sum_{n=-\infty}^{\infty} (-5)^{n}z^{n+1} u[n]\\
 +
      &\text{let }k = -n-1\\
 +
      &= \sum_{k=-\infty}^{\infty} (-5)^{-k-1}z^{-k} u[-k-1]\\
 +
      &= \sum_{k=-\infty}^{\infty}(-5)^{-k-1}u[-k-1] z^{-k}\\
 +
      &\text{By comparison with the Z Transform definition...}\\
 +
x[n] &= (-5)^{-n-1}u[-n-1]\\
 +
\end{align}
 +
</math>
  
 
Ex. 4 Find the Inverse Z transform of the following signal  
 
Ex. 4 Find the Inverse Z transform of the following signal  
Line 92: Line 135:
 
<math>X(z)=\frac{1}{1-2z}, \text{ ROC } |2z|>1 </math>
 
<math>X(z)=\frac{1}{1-2z}, \text{ ROC } |2z|>1 </math>
  
:<font size= 2>Manipulate the given signal</font size>
+
:notice: ROC is type 2
<center><math>X(z)=\frac{1}{1-2z} = \frac{-1}{2z} \frac{1}{1-\frac{1}{2z}}</math></center>
+
Solution
 +
 
 +
<math>
 +
\begin{align}
 +
X(z) &= \frac{1}{1-2z}\\
 +
      &= \frac{1}{2z} \frac{1}{1-(-\frac{1}{2z})}\\
 +
      &= \sum_{n=0}^{\infty} (\frac{-1}{2z})^{n}\frac{1}{2z} \text{  if } |-\frac{1}{2z}| < 1\\
 +
      &= \sum_{n=0}^{\infty} (-2z)^{-n}(2z)^{-1}\\
 +
      &= \sum_{n=-\infty}^{\infty} \frac{1}{2}(-2)^{-n}z^{-n-1} u[n]\\
 +
      &\text{ let } k=n+1\\
 +
      &= \sum_{k=-\infty}^{\infty} \frac{1}{2}(-2)^{-k+1}u[k-1] z^{-k}\\
 +
      &\text{By comparison with the Z Transform definition...}\\
 +
x[n] &= \frac{1}{2}(-2)^{-k+1}u[n-1]\\
 +
\end{align}
 +
</math>
  
:<font size=2>Using a infinite Geometric sum we can obtain</font size>
+
Ex. 5 Find the Inverse Z transform of the following signal
  
<center><math>X(z) = - \sum_{n=0}^{\infty} (\frac{1}{2z})^{n}\frac{1}{2z} = - \sum_{n=0}^{\infty} z^{-n-1}2^{-n-1} = - \sum_{n=-\infty}^{\infty} z^{-n-1}2^{-n-1} u[n]</math></center>
+
<math>X(z)=\frac{-1}{z^2-4z-5}, \text{ ROC } 1<|z|<5 </math>
  
<center><math> \text{ let } k=n+1, \text{ then } X(z) = - \sum_{k=-\infty}^{\infty} z^{-k} 2^{} u[k-1] = - \sum_{k=-\infty}^{\infty} u[k-1] z^{-k}</math></center>
+
:notice: ROC is type 3
 +
Solution
  
:<font size= 2> By comparison with the Z Transform definition, we can determine <math> x[n] </math></font size>
+
<math>
 +
\begin{align}
 +
X(z) &= \frac{-1}{z^2-4z-5}\\
 +
      &\text{ by partial fraction expansion}\\
 +
      &= \Big( \frac{1}{6} \Big)\Big( \frac{1}{z+1}+\frac{1}{5-z} \Big)\\
 +
      & \text{by infinite geometric series}\\
 +
      &= \Big( \frac{1}{6} \Big) \Bigg( \sum_{n=0}^{\infty} (\frac{1}{z})(\frac{-1}{z})^{n} + \sum_{m=0}^{\infty} (\frac{1}{5})(\frac{z}{5})^m \Bigg) \text{  if } 1<|z|< 5\\
 +
      &=\Big( \frac{1}{6} \Big) \Bigg( \sum_{n=-\infty}^{\infty} (-1)^n(z)^{-n-1}u[n] + \sum_{m=-\infty}^{\infty} (5)^{-m-1)}(z)^{m}u[m] \Bigg)\\
 +
      & \text{let } k=n+1, l=-m\\
 +
      &= \Big( \frac{1}{6} \Big) \Bigg( \sum_{k=-\infty}^{\infty} (-1)^{k-1}(z)^{-k}u[k-1] + \sum_{l=-\infty}^{\infty} (5)^{l-1)}(z)^{-l}u[-l] \Bigg)\\
 +
      & \text{using the linearity principle of Z transforms}\\
 +
x[n] &= \frac{1}{6}(-1)^{n-1}u[n-1] + \frac{1}{6} (5)^{n-1)}(z)^{-n}u[-n]
 +
   
 +
\end{align}
 +
</math>
  
<center><math>x[n] = -u[n-1]</math></center>
+
----
 +
'''Using Matlab to find Inverse Z Transforms'''
 +
[http://www.mathworks.com/help/symbolic/iztrans.html|mathworks.com]
 +
----
 +
'''Additional links'''
 +
*[https://www.youtube.com/watch?v=wG6VUnkrO90|Good instructional video]
 +
*[[Z_Transform_table|Z Transform Pairs and Properties]]
 +
----
 +
'''Questions, Comments'''
 +
-
 +
-
 +
-
 +
----
 +
[[2014_Fall_ECE_438_Boutin|Back to ECE438 Fall 2014]]

Latest revision as of 17:11, 23 February 2015


Inverse Z Transform

Student project for ECE438 Fall 2014



Introduction The Z Transform is the generalized version of the DTFT. You can obtain the Z Transform from the DTFT by replacing $ e^{j\omega} $ with $ re^{j\omega} $ which is equivalent to z. The The DTFT is equal to the Z Transform when $ |z| =1 $

$ \begin{align} \text{DTFT: } X(w) &= \sum_{n=-\infty}^\infty x[n]e^{-j\omega n}\\ \text{Z-Transform: } X(z) &= \sum_{n=-\infty}^\infty x[n]z^{-n}\\ \text{Inv. Z-Transform: } x[n] &= \frac{1}{2\pi j}\oint_{c}X(z)z^{n-1}dz \end{align} $


Region of Convergence (ROC) The ROC determines the region on the Z Plane where the Z Transform converges. The ROC depends solely on the 'r' value that is contained in 'z'. The ROC is one of three cases;

1. The ROC starts from a circle centered at the origin and fills in toward the origin
2. The ROC starts from a circle centered at the origin and extends outward to infinity
3. The ROC is the space in between two circles centered at the origin.

If the ROC includes the unit circle then the DTFT converges for that function if it is not included, then it does not.

$ \begin{align} \text{Remember: } z &=re^{j\omega} \end{align} $

The ROC is determined when preforming Z transforms and is given when preforming inverse Z transforms.


Solving an inverse Z Transform To find the Inverse Z transform of signals use manipulation then direct Inversion. Do not use formula directly!

The Infinite Geometric Series formula is used in most problems involving Inv. Z transform.

$ \begin{align} \text{Infinite Geometric Series: } X(z) &= \sum_{n=-\infty}^{\infty} (a)r^{n} u[n]\\ &= \sum_{n=0}^{\infty} (a)r^{n}\\ &= \frac{a}{1-r}\\ \end{align} $

it can be seen that this general form is already starting to look like that of the Z Transform, with some change of variables we can manipulate this equation to be that of a Z transform and then by comparison find the inverse z transform.


Examples

Ex. 1 Find the Inverse Z transform of the following signal

$ X(z)=\frac{1}{1-z}, \text{ ROC } |z|<1 $

notice: ROC is type 1

Solution

$ \begin{align} X(x) &= \frac{1}{1-z}\\ &= \sum_{n=0}^{\infty} 1(z^{n}) \text{ if } |z| < 1\\ &= \sum_{n=-\infty}^{\infty} z^{n} u[n]\\ &\text{let }k = -n\\ &= \sum_{k=-\infty}^{\infty} z^{-k} u[-k]\\ &= \sum_{k=-\infty}^{\infty}u[-k] z^{-k}\\ &\text{By comparison with the Z Transform definition..}\\ x[n] &= u[-n]\\ \end{align} $

Ex. 2 Find the Inverse Z transform of the following signal

$ X(z)=\frac{1}{1-z}, \text{ ROC } |z|>1 $

notice: ROC is type 2

Solution

$ \begin{align} X(z) &= \frac{1}{1-z} \\ &= \frac{1}{z} \frac{1}{1-(-\frac{1}{z})}\\ & \text{Using a infinite Geometric series...}\\ &= \sum_{n=0}^{\infty} (\frac{-1}{z})^{n}\frac{1}{z} \text{ if } |-\frac{1}{z}| < 1\\ &= \sum_{n=0}^{\infty}(-1)^{n} z^{-n-1} \\ &= \sum_{n=-\infty}^{\infty} (-1)^{n} z^{-n-1} u[n]\\ &\text{ let } k=n+1 \\ &= \sum_{k=-\infty}^{\infty}(-1)^{k-1} z^{-k} u[k-1] \\ &= \sum_{k=-\infty}^{\infty} (-1)^{k-1} u[k-1] z^{-k}\\ &\text{By comparison with the Z Transform definition...}\\ x[n] &=(-1)^{n-1} u[n-1]\\ \end{align} $

Ex. 3 Find the Inverse Z transform of the following signal

$ X(z)=\frac{z}{1-5z}, \text{ ROC } |z|<\frac{1}{5} $

notice: ROC is type 1

Solution

$ \begin{align} X(x) &= \frac{z}{1+5z}\\ &= \frac{z}{1-(-5z)}\\ &= \sum_{n=0}^{\infty} z(-5z^{n}) \text{ if } |z| < \frac{1}{5}\\ &= \sum_{n=-\infty}^{\infty} (-5)^{n}z^{n+1} u[n]\\ &\text{let }k = -n-1\\ &= \sum_{k=-\infty}^{\infty} (-5)^{-k-1}z^{-k} u[-k-1]\\ &= \sum_{k=-\infty}^{\infty}(-5)^{-k-1}u[-k-1] z^{-k}\\ &\text{By comparison with the Z Transform definition...}\\ x[n] &= (-5)^{-n-1}u[-n-1]\\ \end{align} $

Ex. 4 Find the Inverse Z transform of the following signal

$ X(z)=\frac{1}{1-2z}, \text{ ROC } |2z|>1 $

notice: ROC is type 2

Solution

$ \begin{align} X(z) &= \frac{1}{1-2z}\\ &= \frac{1}{2z} \frac{1}{1-(-\frac{1}{2z})}\\ &= \sum_{n=0}^{\infty} (\frac{-1}{2z})^{n}\frac{1}{2z} \text{ if } |-\frac{1}{2z}| < 1\\ &= \sum_{n=0}^{\infty} (-2z)^{-n}(2z)^{-1}\\ &= \sum_{n=-\infty}^{\infty} \frac{1}{2}(-2)^{-n}z^{-n-1} u[n]\\ &\text{ let } k=n+1\\ &= \sum_{k=-\infty}^{\infty} \frac{1}{2}(-2)^{-k+1}u[k-1] z^{-k}\\ &\text{By comparison with the Z Transform definition...}\\ x[n] &= \frac{1}{2}(-2)^{-k+1}u[n-1]\\ \end{align} $

Ex. 5 Find the Inverse Z transform of the following signal

$ X(z)=\frac{-1}{z^2-4z-5}, \text{ ROC } 1<|z|<5 $

notice: ROC is type 3

Solution

$ \begin{align} X(z) &= \frac{-1}{z^2-4z-5}\\ &\text{ by partial fraction expansion}\\ &= \Big( \frac{1}{6} \Big)\Big( \frac{1}{z+1}+\frac{1}{5-z} \Big)\\ & \text{by infinite geometric series}\\ &= \Big( \frac{1}{6} \Big) \Bigg( \sum_{n=0}^{\infty} (\frac{1}{z})(\frac{-1}{z})^{n} + \sum_{m=0}^{\infty} (\frac{1}{5})(\frac{z}{5})^m \Bigg) \text{ if } 1<|z|< 5\\ &=\Big( \frac{1}{6} \Big) \Bigg( \sum_{n=-\infty}^{\infty} (-1)^n(z)^{-n-1}u[n] + \sum_{m=-\infty}^{\infty} (5)^{-m-1)}(z)^{m}u[m] \Bigg)\\ & \text{let } k=n+1, l=-m\\ &= \Big( \frac{1}{6} \Big) \Bigg( \sum_{k=-\infty}^{\infty} (-1)^{k-1}(z)^{-k}u[k-1] + \sum_{l=-\infty}^{\infty} (5)^{l-1)}(z)^{-l}u[-l] \Bigg)\\ & \text{using the linearity principle of Z transforms}\\ x[n] &= \frac{1}{6}(-1)^{n-1}u[n-1] + \frac{1}{6} (5)^{n-1)}(z)^{-n}u[-n] \end{align} $


Using Matlab to find Inverse Z Transforms [1]


Additional links


Questions, Comments - - -


Back to ECE438 Fall 2014

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood