Line 14: Line 14:
 
<math>\alpha_k</math> is the solution to <math>{d \over d\alpha}f(x^{(k)} + \alpha d^{(k)}) = 0 </math>
 
<math>\alpha_k</math> is the solution to <math>{d \over d\alpha}f(x^{(k)} + \alpha d^{(k)}) = 0 </math>
  
 +
<math>{d \over d\alpha}f(x^{(k)} + \alpha d^{(k)}) = (x^{(k)T} + \alpha d^{(k)T}) Q d^{(k)} - d^{(k)T} b = 0</math>
 +
 +
<math>\therefore \alpha d^{(k)T} Q d^{(k)} = -x^{(k)T} Q d^{(k)} + d^{(k)T} b = (b - Qx^{(k)})^T d^{(k)} = - g^{(k)T} d^{(k)}</math>
 +
 +
<math>\therefore \alpha_k = - \frac {g^{(k)T} d^{(k)}} {d^{(k)T} Q d^{(k)}} </math>
 
[[ QE2013 AC-3 ECE580|Back to QE2013 AC-3 ECE580]]
 
[[ QE2013 AC-3 ECE580|Back to QE2013 AC-3 ECE580]]

Revision as of 12:18, 27 January 2015


QE2013_AC-3_ECE580-1

Part 1,2,3,4,5

(i)
Solution:
$ \alpha_k $ is the solution to $ {d \over d\alpha}f(x^{(k)} + \alpha d^{(k)}) = 0 $

$ {d \over d\alpha}f(x^{(k)} + \alpha d^{(k)}) = (x^{(k)T} + \alpha d^{(k)T}) Q d^{(k)} - d^{(k)T} b = 0 $

$ \therefore \alpha d^{(k)T} Q d^{(k)} = -x^{(k)T} Q d^{(k)} + d^{(k)T} b = (b - Qx^{(k)})^T d^{(k)} = - g^{(k)T} d^{(k)} $

$ \therefore \alpha_k = - \frac {g^{(k)T} d^{(k)}} {d^{(k)T} Q d^{(k)}} $ Back to QE2013 AC-3 ECE580

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang