(2 intermediate revisions by the same user not shown)
Line 32: Line 32:
 
=Solution 1=
 
=Solution 1=
  
<math>Var(X)=E(X^2)-E(X)^2</math>
+
<math>E(X_n)=\frac{n-1}{n}E(Y)+\frac{1}{n}E(Z)</math>
  
First,
+
Where
  
<math>E(X^2)=\int_0^{\infty}x^2\lambda{e}^{-\lambda{x}}dx</math>
+
<math>Y \sim N(\frac{n-1}{n}\sigma, \sigma^2)</math>
  
Since
+
<math>Z \sim EXP(\sigma)</math>
  
<math>\begin{array}{l}\int{x}^2\lambda{e}^{-\lambda{x}}dx\\
+
From the property of Normal distribution and exponential distribution,
=\int -x^2 de^{-\lambda x}\\
+
=-x^2e^{-{\lambda}x}+{\int}2xe^{-{\lambda}x}dx\\
+
=-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}+{\int}\frac{e^{-{\lambda}x}}{\lambda}2dx\\
+
=-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x}
+
\end{array}</math>,
+
  
We have
+
<math>E(Y)=\frac{n-1}{n}\sigma</math>
  
<math>E(X^2)=-x^2e^{-\lambda x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x}|_0^\infty</math>
+
<math>E(Z)=\frac{1}{\sigma}</math>.
  
By L'Hospital's rule, we have
+
Therefore,
  
<math>\lim_{x\to \infty}x^2e^{-\lambda x} = \lim_{x\to \infty}\frac{x^2}{e^{-\lambda x}}=\lim_{x\to \infty}\frac{2x}{\lambda e^{\lambda x}}=\lim_{x\to \infty}\frac{2}{\lambda^2e^{\lambda x}}=0</math>
+
<math>\lim_{n\to \infty}E(X_n)=\lim_{n\to \infty}(\frac{n-1}{n})^2\sigma+\frac{1}{n}\frac{1}{\sigma}=\sigma</math>.
  
and
+
Also,
  
<math>\lim_{x\to \infty}xe^{\lambda x} = \lim_{x\to \infty} \frac{x}{e^{\lambda x}}=\lim_{x\to \infty} \frac{1}{\lambda e^{\lambda x}} = 0</math>.
+
<math>\lim_{n\to \infty}E(X_{n+m})=\lim_{n\to \infty}(\frac{n+m-1}{n+m})^2\sigma+\frac{1}{n+m}\frac{1}{\sigma}=\sigma</math>.
  
Therefore,
+
Thus,
  
<math>E(X) = \frac{2}{\lambda^2}</math>.
+
<math>\lim_{n\to \infty}E(X_n-X_{n+m})=\lim_{n\to \infty}E(X_n)-\lim_{x\to \infty}E(X_{n+m})=0</math>,
  
Then we take a look at <math>E(X)</math>.  
+
<math>\lim_{n\to \infty}E(X_{n+m}-X_n)=\lim_{n\to \infty}E(X_{n+m})-\lim_{n\to \infty}E(X_n)=0</math>.
  
<math>E(X)=\int_0^{\infty}x\lambda{e}^{-\lambda{x}}dx</math>
+
So we have
  
<math>\begin{array}{l}
+
<math>\lim_{n\to \infty}E(|X_{n+m}-X_n|)=0</math>
\int x\lambda{e}^{-\lambda{x}}dx\\
+
=\int xde^(\lambda x)\\
+
=-xe^{-\lambda x}+\int e^{\lambda x}dx\\
+
=-xe^{-\lambda x}-\frac{1}{x}e^{\lambda x}\\
+
\end{array}</math>
+
  
Similar to the calculation of <math>E(X^2)</math>,
+
for every m.
  
<math>E(X)=\frac{1}{\lambda}</math>.
+
From the Cauchy criterion for mean-square convergence, this sequence converges int he mean-square sense
 
+
Therefore,
+
 
+
<math>Var(X)=E(X^2)-E(X)^2=\frac{2}{\lambda^2}-\frac{1}{\lambda^2}=\frac{1}{\lambda^2}</math>.
+
  
 
----
 
----
 
==Solution 2==
 
==Solution 2==
  
<math>\begin{align}
+
Since
E(X)&=\int_{-\infty}^{+\infty}xp(x)dx\\
+
 
&=\int_{0}^{\infty}x\lambda e^{-\lambda x}dx\\
+
<math>\lim_{n\to \infty}f_n(x)=\frac{1}{\sqrt{2\pi}\sigma}exp[-\frac{1}{2\sigma^2}(x-\sigma)^2] \sim N(\sigma,\sigma^2)</math>
&=-(xe^{-lambda x}|_0^{\infty}-\int_0^{\infty}e^{-\lambda x}dx)\\
+
 
&=\frac{1}{x}
+
Guess it converges to <math>k\sigma</math>
\end{align}</math>
+
  
 
<math>\begin{align}
 
<math>\begin{align}
E(X^2)&=\int_{-\infty}^{+\infty}x^2p(x)dx\\
+
&\lim_{n\to \infty}E(|X_n-k\sigma|^2)\\
&=\int_{0}^{\infty}x^2 \lambda e^{-\lambda x}dx\\
+
&=\lim_{n\to \infty}E(X_n^2-2k\sigma x_n+k^2\sigma^2)\\
&=-(x^2e^{-lambda x}|_0^{\infty}-\int_0^{\infty}2xe^{-\lambda x}dx)\\
+
&=\lim_{n\to \infty}E(X_n^2)-2\sigma k \lim_{n\to \infty}E(X_n) + k^2\sigma^2\\
&=\frac{2}{x^2}
+
&=2\sigma^2-2\sigma^2k+k^2\sigma^2=0
 
\end{align}</math>
 
\end{align}</math>
  
Therefore,
+
So we need to solve <math>k^2-2k+2=0</math>.
  
<math>Var(X)=E(X^2)-E(X)^2=\frac{1}{\lambda^2}</math>
+
Since there is no solution, this sequence doesn't converge.
  
 
<font color="red"><u>'''Critique on Solution 2:'''</u>  
 
<font color="red"><u>'''Critique on Solution 2:'''</u>  
  
Solution 2 is correct. In addition, calculating <math>E(X)</math> first is better since the result can be used in calculating <math>E(X^2)</math>.
+
This solution uses wrong logic. If we consider <math>\lim_{x\to \infty}f_n(x)</math>, we lose the information of <math>n</math> and <math>n+m</math>. The result is we can no longer use the Cauchy criterion. The solution then guesses the convergence, which is highly unreliable. As it turns out, it fails to find the convergence.
  
 
</font>
 
</font>

Latest revision as of 06:33, 20 November 2014


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2013



Part 4

Consider a sequence of independent random variables $ X_1,X_2,... $, where $ X_n $ has pdf

$ \begin{align}f_n(x)=&(1-\frac{1}{n})\frac{1}{\sqrt{2\pi}\sigma}exp[-\frac{1}{2\sigma^2}(x-\frac{n-1}{n}\sigma)^2]\\ &+\frac{1}{n}\sigma exp(-\sigma x)u(x)\end{align} $.

Does this sequence converge in the mean-square sense? Hint: Use the Cauchy criterion for mean-square convergence, which states that a sequence of random variables $ X_1,X_2,... $ converges in mean-square if and only if $ E[|X_n-X_{n+m}|] \to 0 $ as $ n \to \infty $, for every $ m>0 $.


Solution 1

$ E(X_n)=\frac{n-1}{n}E(Y)+\frac{1}{n}E(Z) $

Where

$ Y \sim N(\frac{n-1}{n}\sigma, \sigma^2) $

$ Z \sim EXP(\sigma) $

From the property of Normal distribution and exponential distribution,

$ E(Y)=\frac{n-1}{n}\sigma $

$ E(Z)=\frac{1}{\sigma} $.

Therefore,

$ \lim_{n\to \infty}E(X_n)=\lim_{n\to \infty}(\frac{n-1}{n})^2\sigma+\frac{1}{n}\frac{1}{\sigma}=\sigma $.

Also,

$ \lim_{n\to \infty}E(X_{n+m})=\lim_{n\to \infty}(\frac{n+m-1}{n+m})^2\sigma+\frac{1}{n+m}\frac{1}{\sigma}=\sigma $.

Thus,

$ \lim_{n\to \infty}E(X_n-X_{n+m})=\lim_{n\to \infty}E(X_n)-\lim_{x\to \infty}E(X_{n+m})=0 $,

$ \lim_{n\to \infty}E(X_{n+m}-X_n)=\lim_{n\to \infty}E(X_{n+m})-\lim_{n\to \infty}E(X_n)=0 $.

So we have

$ \lim_{n\to \infty}E(|X_{n+m}-X_n|)=0 $

for every m.

From the Cauchy criterion for mean-square convergence, this sequence converges int he mean-square sense


Solution 2

Since

$ \lim_{n\to \infty}f_n(x)=\frac{1}{\sqrt{2\pi}\sigma}exp[-\frac{1}{2\sigma^2}(x-\sigma)^2] \sim N(\sigma,\sigma^2) $

Guess it converges to $ k\sigma $

$ \begin{align} &\lim_{n\to \infty}E(|X_n-k\sigma|^2)\\ &=\lim_{n\to \infty}E(X_n^2-2k\sigma x_n+k^2\sigma^2)\\ &=\lim_{n\to \infty}E(X_n^2)-2\sigma k \lim_{n\to \infty}E(X_n) + k^2\sigma^2\\ &=2\sigma^2-2\sigma^2k+k^2\sigma^2=0 \end{align} $

So we need to solve $ k^2-2k+2=0 $.

Since there is no solution, this sequence doesn't converge.

Critique on Solution 2:

This solution uses wrong logic. If we consider $ \lim_{x\to \infty}f_n(x) $, we lose the information of $ n $ and $ n+m $. The result is we can no longer use the Cauchy criterion. The solution then guesses the convergence, which is highly unreliable. As it turns out, it fails to find the convergence.


Back to QE CS question 1, August 2013

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang