Line 8: Line 8:
 
= [[ECE-QE_CS5-2013|Question 5, August 2013]], Part 1 =
 
= [[ECE-QE_CS5-2013|Question 5, August 2013]], Part 1 =
  
:[[ QE637_T_Pro1 | Part 1 ]],[[ QE637_T_Pro2 | 2 ]]
+
:[[ QE637 2013 Pro1 | Part 1 ]],[[ QE637 2013 Pro2 | 2 ]]
 
----
 
----
== Solution: ==
+
== Solution 1: ==
  
a) <math>\gamma=1</math>
 
 
b)
 
 
<math>
 
(x_r,y_r)=(\frac{a}{a+d+g},\frac{d}{a+d+g})
 
</math> <br \>
 
<math>
 
(x_g,y_g)=(\frac{b}{b+e+h},\frac{e}{b+e+h})
 
</math><br \>
 
<math>
 
(x_b,y_b)=(\frac{c}{c+f+i},\frac{f}{c+f+i})
 
</math>
 
 
c)
 
 
<math>
 
(x_w,y_w)=(\frac{a+b+c}{a+b+c+d+e+f+g+h+i},\frac{d+e+f}{a+b+c+d+e+f+g+h+i})
 
</math>
 
 
d)
 
If <math> (X,Y,Z)=(0,1/2,1/2) </math>, then <math> (x,y)=(0,1/2) </math>.  [[ Image:Pro1_d.PNG ]]<br />
 
In the chromaticity diagram, this point is outside the horse shoe shape, so its RGB values are not all larger than 0 (<math>R<0,G>0,B>0</math>).
 
 
e) We are likely to see quantization artifact in dark region.
 
  
 
== Solution 2: ==
 
== Solution 2: ==
 
a) The gamma is 1
 
 
b)
 
 
<math>
 
(x_r,y_r)=(\frac{a}{a+d+g},\frac{d}{a+d+g})
 
</math> <br \>
 
<math>
 
(x_g,y_g)=(\frac{b}{b+e+h},\frac{e}{b+e+h})
 
</math><br \>
 
<math>
 
(x_b,y_b)=(\frac{c}{c+f+i},\frac{f}{c+f+i})
 
</math>
 
 
c)
 
 
<math>
 
(x_w,y_w)=(\frac{a+b+c}{a+b+c+d+e+f+g+h+i},\frac{d+e+f}{a+b+c+d+e+f+g+h+i})
 
</math>
 
 
d) This color is imaginary. At least one of R,G,B values must be negative. Cannot be produced by this device. [[ Image:Pro1_d2.PNG ]]<br />
 
 
<span style="color:green"> The student can be more specific about the positive or negative of each R,G,B value of this color. </span>
 
 
e) Quantization artifacts in the dark area.
 
  
 
----
 
----
 
===Related Problem===
 
===Related Problem===
Consider a color imaging device that takes input values of <math> (r,g,b) </math> and produces ouput <math> (X,Y,Z)</math> values given by
 
 
<math>
 
\left[ {\begin{array}{*{20}{c}}
 
X\\
 
Y\\
 
Z
 
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
 
a&b&c\\
 
d&e&f\\
 
g&h&i
 
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
 
r^\alpha\\
 
g^\alpha\\
 
b^\alpha
 
\end{array}} \right]
 
</math>
 
 
a) Calculate the white point of the device in chromaticity coordinates.
 
 
b) What are the primaries associated with the r,g, and b components respectively?
 
 
c) What is the gamma of the device?
 
 
d) Draw the region on the chromaticity diagram corresponding to <math> r < 0, g > 0, b > 0</math>.
 
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE QE page]]:
 
[[ECE_PhD_Qualifying_Exams|Back to ECE QE page]]:

Revision as of 15:46, 11 November 2014


ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS)

Question 5, August 2013, Part 1

Part 1 , 2

Solution 1:

Solution 2:


Related Problem


Back to ECE QE page:

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva