(One intermediate revision by the same user not shown)
Line 32: Line 32:
 
\end{array}} \right] </math>,  
 
\end{array}} \right] </math>,  
 
so<br>
 
so<br>
<math> p_0(n) = [3 ~7]^T, p_1(m) = [4~6] </math>.  
+
<math> p_0(n) =[4~6], p_1(m) = [3 ~7]^T </math>.  
 
+
 
With the above the information of the projection, the original form of the 2D signal cannot be determined. For example,  
 
With the above the information of the projection, the original form of the 2D signal cannot be determined. For example,  
 
<math>
 
<math>
Line 41: Line 40:
 
2 ~ 5\\
 
2 ~ 5\\
 
\end{array}} \right] </math> gives the same projection.
 
\end{array}} \right] </math> gives the same projection.
 +
 +
Related problem:
 +
Let <math> g(x,y) = sinc(x/2, y/2) </math>, and let <math> s(m,n) = g(mT, nT) </math> where T = 1.
 +
 +
a) Calculate <math> G(\mu, \nu) </math> the CSFT of <math>g(x,y) </math>.
 +
 +
 +
b) Calculate <math> S(e^{j\mu}, e^{j\nu}) </math> the DSFT of <math> s(m,n) </math>.

Latest revision as of 20:48, 10 November 2014

a) Since

$ X(e^{j\mu},e^{j\nu}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n)e^{-j(m\mu+n\nu)} $

and

$ p_0(e^{jw}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n)e^{-jnw} $, 

we have:

$ p_0(e^{jw}) = X(e^{j\mu},e^{jw}) |_{\mu=0} $

b) Similarly to a), we have:

$ p_1(e^{jw}) = X(e^{jw},e^{j\nu}) |_{\nu=0} $

c)
$ \sum_{n=-\infty}^{\infty} p_0(n) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n) = X(e^{j\mu}, e^{j\nu}) |_{\mu=0, \nu=0} $ which is the DC point of the image.

d) No, it can't provide sufficient information. From the expression in a) and b), we see that $ p_0(e^{jw}) $ and $ p_1(e^{jw}) $ are only slices of the DSFT. It lost the information when $ \mu $ and $ \nu $ are not zero. A simple example would be: Let
$ x(m,n) = \left[ {\begin{array}{*{20}{c}} 1 ~ 2 \\ 3 ~ 4\\ \end{array}} \right] $, so
$ p_0(n) =[4~6], p_1(m) = [3 ~7]^T $. With the above the information of the projection, the original form of the 2D signal cannot be determined. For example, $ x(m,n) = \left[ {\begin{array}{*{20}{c}} 2 ~ 1 \\ 2 ~ 5\\ \end{array}} \right] $ gives the same projection.

Related problem: Let $ g(x,y) = sinc(x/2, y/2) $, and let $ s(m,n) = g(mT, nT) $ where T = 1.

a) Calculate $ G(\mu, \nu) $ the CSFT of $ g(x,y) $.


b) Calculate $ S(e^{j\mu}, e^{j\nu}) $ the DSFT of $ s(m,n) $.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett