Line 1: Line 1:
a) Since
+
a) Since  
  
 
<math>X(e^{j\mu},e^{j\nu}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty}  
 
<math>X(e^{j\mu},e^{j\nu}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty}  
x(m,n)e^{-j(m\mu+n\nu)}</math>  
+
x(m,n)e^{-j(m\mu+n\nu)}</math><br>
  
and
+
and  
  
 
<span class="texhtml"><math>p_0(e^{jw}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty}  
 
<span class="texhtml"><math>p_0(e^{jw}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty}  
x(m,n)e^{-jnw}</math>,&nbsp;</span>
+
x(m,n)e^{-jnw}</math>,&nbsp;</span>  
  
we have:
+
we have:  
  
<math>P_0(e^{jw}) = X(e^{j\mu}, e^{jw})|_\mu=0</math>
+
<span class="texhtml">''P''<sub>0</sub>(''e''<sup>''j''''w'''</sup>''') = ''X''(''e''<sup>''j''μ</sup>,''e''<sup>''j'''</sup>'''''w'') | <sub>μ</sub> = 0</span>

Revision as of 20:25, 10 November 2014

a) Since

$ X(e^{j\mu},e^{j\nu}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n)e^{-j(m\mu+n\nu)} $

and

$ p_0(e^{jw}) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n)e^{-jnw} $, 

we have:

P0(ej'w) = X(ejμ,ejw) | μ = 0

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang